
Deep Reinforcement Learning and
Function Optimization

Hanan Ather∗†

Department of Mathematics and Statistics

Summer, 2023
University of Ottawa

∗Statistics Canada, Modern Statistical Methods and Data Science Division
†University of Ottawa, Department of Mathematics and Statistics

1

Contents Reinforcement Learning, Hanan Ather

Contents

1 Introduction 4
1.1 What is Reinforcement Learning? . 4
1.2 Connections to Machine Learning . 4
1.3 History of Deep Reinforcement Learning . 5
1.4 Structure of Reinforcement Learning Algorithms 5
1.5 Model-based and Model-free learning . 6
1.6 On-policy and Off-Policy Methods . 7

2 Background 7
2.1 Markov Decision Process . 7
2.2 Episodic Reinforcement Learning . 9
2.3 Policy and Return . 9
2.4 Goal of Reinforcement Learning . 10
2.5 Value and State-Value Functions . 11
2.6 The Bellman Equations . 12
2.7 Finding Optimal Policies . 13

3 Tabular Algorithms 14
3.1 Dynamic Programing . 14
3.2 Monte Carlo Learning . 15
3.3 Temporal difference learning . 16
3.4 Generalized Policy Iteration (GPI) . 16
3.5 Why Q−function for Control? . 17

4 Deep Reinforcement Learning 18
4.1 Value Function Approximation . 18
4.2 State-Value Function Approximation . 18

5 Deep Q-Networks (DQN) 19
5.1 Why Neural Networks? . 19
5.2 Q-Learning via Function Approximation . 20
5.3 Experience Replay . 20
5.4 DQNs: Fixed Q-Targets . 21

6 Policy Gradient Methods 22
6.1 Policy Gradient Theorem . 23
6.2 Score Function Estimator . 23
6.3 Deriving Policy Gradient . 25
6.4 Monte Carlo Policy Gradient . 27
6.5 Baselines . 28
6.6 Generalizing Policy Gradients . 29

7 Advantage Actor-Critic 29
7.1 The Advantage Function . 31
7.2 Estimating Advantage . 31
7.3 Generalized Advantage Estimation . 32

8 Advanced Policy Gradient Methods 33
8.1 Performance Collapse and Surrogate Objective 33
8.2 Monotonic Improvement Theory . 34
8.3 Trust Region Policy Optimization Problem . 35
8.4 Proximal Policy Optimization . 36

8.4.1 Adaptive KL Penalty Algorithm . 36
8.4.2 PPO with Clipped Surrogate Objectives 36

2

3

9 Experiments 37
9.1 Optimization as Reinforcement Learning . 37
9.2 Optimization of single-variable continuous functions 38

9.2.1 Direct Jump Strategy in Optimization . 40
9.3 Increasing Complexity of State Representation 41
9.4 Reinforcement Learning for Linear Regression Optimization 43
9.5 Generalization . 44
9.6 Multi-Task Learning for Optimizing Regression 44
9.7 Adaptive Learning Rate Optimization in Gradient Descent 45

9.7.1 Adaptive Learning Rate Methods . 46
9.7.2 Reinforcement Learning for Adaptive Learning Rate 47
9.7.3 Results and Observations . 47

9.8 Future Directions . 48

3

Introduction Reinforcement Learning, Hanan Ather

Agent

Environment

Action atNew state st+1 Reward rt+1

Figure 1: The MDP Framework: As illustrated in the figure, the agent, which represents an
AI algorithm, and the environment, an abstract entity delivering uncertain outcomes,
engage in a time-sequenced, iterative interaction. Credit: Adapted from Sutton &
Barto, 2018 [1]

§1 Introduction

§1.1 What is Reinforcement Learning?

Reinforcement Learning (RL) is a subfield of artificial intelligence that centers around an agent
learning to make optimal decisions by interacting with its environment, receiving feedback in
the form of rewards or penalties, and adjusting its behavior accordingly to maximize cumulative
rewards over time [1]. The agent is an entity that observes the environment, takes actions
based on these observations, and learns from the results to improve its decisions over time. The
environment is the dynamic context or ‘world’ within which the agent operates. At each time
step, the agent perceives a possibly partial or noisy state of the environment, referred to as an
observation. Based on it’s (possibly partial) observation of the state of the world, the agent
decides an action to take. The environment changes when the agent acts on it. However, the
environment may also evolve independently. Based on the action it took, the agent acquires a
scalar reward, signaling the desirability of its current state. The primary objective of the agent
is to maximize this cumulative reward, known as the return. Reinforcement learning methods
equip the agent with strategies to learn behaviours that contribute towards achieving this goal.

§1.2 Connections to Machine Learning

At a high level, machine learning is about using algorithms to learn from data, and then making
predictions or decisions about new unseen data by extrapolating learned insights. Most of modern
machine learning focuses on learning functions from data. In essence, a function takes an input
(or set of inputs), performs some operations, and produces an output. In machine learning, this
function is learned from the data such that it can predict the output (target variable) given a
new input. Machine learning follows a straightforward methodology: select a versatile function
approximator such as a deep neural network, identify a suitable loss function, and employ gradient
descent for optimizing the network’s parameters. The overall learning problem in machine learning
boils down to an optimization problem: find the parameters that minimize the loss function. By
adjusting the parameters to achieve this, the neural network learns the function that best maps
inputs to outputs given the data.

In reinforcement learning (RL), the reduction from learning problem to an optimization problem
presents more complexities compared to supervised learning. A primary challenge lies in the fact
that the function we aim to optimize - the agent’s expected total reward - isn’t entirely accessible
for analytic operations. This is primarily due to its dependence on two unknown elements: the
dynamics model, which predicts the future state of the system based on current state and actions,
and the reward function, which defines the desirability of each state. These two components are
usually unknown in RL, making the optimization process more challenging. Another challenge
arises from the fact that the agent’s input data is significantly influenced by its own behavior.
This dependency makes it difficult to design algorithms that guarantee consistent improvements,
as changes in the agent’s behavior can affect the data it uses for learning. Further complicating
the matter is the existence of multiple potential functions that one might aim to approximate,

4

5

which introduces an additional layer of complexity. We will delve into these various approximation
targets in more detail in Section...

§1.3 History of Deep Reinforcement Learning

Deep reinforcement learning combines the power of reinforcement learning with the versatility
of neural networks for function approximation. The fusion of reinforcement learning and neural
networks has a history stretching back to the early 1990s, when Tesauro’s TD-Gammon [25], a
backgammon playing AI equipped with a neural network value function, performed at a level
comparable to top human players. Since then, neural networks have found consistent use in
system identification and control.
Lin’s 1993 thesis [26] furthered the exploration of this amalgamation, implementing various

reinforcement learning algorithms in conjunction with neural networks in a robotics context.
Despite these promising beginnings, reinforcement learning with nonlinear function approx-

imation remained relatively obscure for about two decades. The majority of reinforcement
learning studies presented at leading machine learning conferences like NIPS and ICML were
largely concentrated on theoretical results or toy problems that utilized linear or tabular function
approximators.
A significant shift occurred in the early 2010s when deep learning started demonstrating

extraordinary empirical success, particularly in fields like speech recognition [27] and computer
vision [28]. Most conventional reinforcement learning methods, tailored to linear or tabular
functions, fell short when it came to learning functions that require multi-step computation.
In contrast, deep neural networks could effectively approximate these complex functions, with
their performance in supervised learning scenarios providing evidence of the tractability of their
optimization.
The field of deep reinforcement learning saw a resurgence of interest following the ground-

breaking results by Mnih et al [29]. Their work showcased an AI learning to play a range of
Atari games using screen images as inputs, and a variant of Q-learning for policy control. Their
approach outperformed previous methods using evolutionary algorithms, despite employing a
more challenging input representation.
Following this resurgence, numerous intriguing results emerged. Notably, Silver et al [30].

demonstrated an AI system that could play the game of Go better than human experts, using a
blend of supervised learning and several reinforcement learning steps for training deep neural
networks, coupled with a tree search algorithm.

§1.4 Structure of Reinforcement Learning Algorithms

Reinforcement Learning (RL) algorithms, while diverse in their approaches, share a common
structural anatomy that allows for a broad high-level understanding of their operation. Essentially,
these algorithms can be decomposed into three fundamental components, which are present, to
varying degrees of complexity, in most, if not all, RL methodologies.

1. Sample Generation: This is the phase where the agent interacts with the environment by
executing its current policy. The aim is to collect experience samples, consisting of states,
actions, and rewards. These samples serve as the empirical basis for the agent’s learning
process. The way these samples are generated can depend on various strategies such as
purely exploratory methods, exploitation of current knowledge, or a combination of both
(exploration-exploitation tradeoff).

2. Model Fitting/Return Estimation: Tthe agent leverages the collected samples to either
construct a model of the environment or directly estimate the expected return (cumulative
future reward) for various state-action pairs. These estimates are pivotal in guiding the
agent’s future actions. While model-based methods strive to understand the environment’s
dynamics, model-free methods circumvent this step by trying to directly learn the optimal
policy or value function.

3. Policy Improvement: Based on the information gained from the previous steps, the
agent refines its policy to better navigate the environment. The improvement could be a

5

Introduction Reinforcement Learning, Hanan Ather

Sample
Generation

Model Fitting /
Return

Estimation

Policy
Improvement

Figure 2: High-level process of RL algorithms: The algorithms start with the generation of samples
through interaction with the environment (1). The samples are then used to estimate
the return or fit a model (2). Based on the information gained, the policy is improved
(3). This process continues in a loop until the policy converges towards an optimal
policy or a predefined stopping criterion is met.

deterministic change, like in Policy Iteration, or a probabilistic one as in Policy Gradient
methods. The refined policy is expected to guide the agent towards actions that maximize
the cumulative reward.

These components form a loop that continues until the agent’s policy converges towards an
optimal policy, or a predefined stopping criterion is met. It’s important to note that while these
components are a simplification, the intricacies and nuances of different RL algorithms can add
significant complexity to each of these steps.

§1.5 Model-based and Model-free learning

In the literature of reinforcement learning (RL), the learning approaches can be classified primarily
into two categories: Model-based learning and Model-free learning [15]. In model-based
learning approaches, the agent’s strategy is to learn a model of the environment before deriving a
policy. The agent creates an internal representation of the environment, encapsulating its rules
and dynamics. As we have seen previously, a model of an environment in RL is most commonly
defined as:

P a
ss′ = P(st+1 = s′ | st = s, at = a)

Ra
ss′ = E[rt+1 | st = s, at = a, st+1 = s′]

Where P a
ss′ is the transition probability from state s to s′ under action a, and Ra

ss′ is the
expected immediate reward when transitioning from s to s′ with action a.

Once the model is well established, the agent utilizes it as a guide to derive and refine its policy
[4]. Although this approach might be more computationally demanding, it often results in a more
robust and flexible policy, since the agent can exploit its comprehension of the environment to
plan and adapt its actions across various situations [1].

On the other hand, model-free learning approaches involve acquiring an action policy directly,
without developing a detailed understanding of the underlying dynamics of the environment. In
this case, the learning agent interacts with the environment based on the rewards it receives,
instead of constructing a comprehensive model of how the environment operates.
An instance of model-free methods is the Q-learning algorithm. It learns an action-value

function Q(s, a), that gives the expected utility of taking a certain action a in a certain state s,
defined as [15]:

Q(s, a) = E[rt + γQ(st+1, at+1) | st = s, at = a]

The agent uses the Q-values to make decisions, but without explicitly constructing a model

6

7

of the environment’s dynamics. This property makes model-free methods less computationally
expensive compared to their model-based counterparts, albeit at the cost of having less potential
to adapt to changes in the environment.

§1.6 On-policy and Off-Policy Methods

The distinction between “on-policy” and “off-policy” methods lies in the relationship between the
policy that the agent follows while exploring the environment (behaviour policy) and the policy
that it learns about (target policy). The fundamental distinction lies in the relationship between
the policy that the agent follows while exploring the environment (behaviour policy) and the
policy it learns about (target policy).

In on-policy methods, the behaviour policy and the target policy are the same. The agent
learns about and improves on the policy it uses to choose its actions. Any exploration must be
part of this policy. In contrast, off-policy methods allows the agent to follow one policy (behaviour
policy) while learning about a different, potentially optimal policy (target policy). The agent
can explore more freely because it can take exploratory actions without directly impacting the
quality of policy its learning about. “ On-policy methods attempt to evaluate or improve the
policy that it used to make decisions, where as off-policy methods evaluate or improve a policy
different from that used to generate the data” (Sutton and Barto, 2018).

• On-policy methods: These are the methods where the policy that’s being improved upon
is the same policy that’s used to make decisions during interaction with the environment.
In other words, the agent learns about and improves the policy that it is currently following.
SARSA is a common example of an on policy method. For exploration, it might use an
ε−greedy strategy, but the important part is that the policy it learns about (Q−values it
updates) is based on the same ε−greedy strategy.

• Off-policy methods: These are methods where the policy that’s being improved is different
from the policy that’s used to make decisions during interaction with the environment. The
agent follows one policy (the behaviour policy), while learning about a different one (target
policy). For example, Q-learning is an off-policy method. The agent can use any exploratory
strategy (like ε−greedy), but the Q-values it learns are based on the assumption of a greedy
policy (always choosing the action with the highest Q-value).

The benefit of off-policy methods is that they allow you to learn an optimal policy while following
exploratory policy for better learning. In contrast, on-policy methods might converge faster
because they are always learning about the policy they are following, but they need to balance
exploration and exploitation with the policy they are learning about.

§2 Background

§2.1 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework used in reinforcement learning
to model decision-making in situations where an agent interacts with an environment that has
probabilistic state transitions and rewards [3].

The motivation for using MDPs in reinforcement learning is to provide a structured representa-
tion of the problem, facilitating the development of algorithms that enable agents to find optimal
policies for maximizing cumulative rewards over time [4].

7

Background Reinforcement Learning, Hanan Ather

Definition 2.1 (Markov Decision Process) MDP is defined by 4-tuple (S, A, Pa, R):

1. a set of states S, possibly infinite

2. a set of actions A, possibly infinite

3. transition probability Pa(s
′, r | s, a) = P[St+1 = s′, Rt = rt|St = st, At = at]

4. a reward Rt+1 ∈ R ⊆ R, and corresponding probability distribution Ra(s
′, s) =

P[r′|s, a] over rewards

In the realm of Reinforcement Learning, the terms state and observation bear distinct meanings.
A state s is a comprehensive representation of the environment’s current condition. By its very
definition, it encapsulates all the requisite information about the world, leaving no detail concealed
or unaccounted for. On the contrary, an observation o offers a more limited view. It provides a
partial portrayal of the state, potentially excluding certain aspects or details. In essence, while a
state offers a complete picture, an observation might only present a snippet.
When an agent possesses the capability to discern the entirety of the environment’s state, we

term such an environment as fully observed. Conversely, in situations where the agent perceives
only a subset or a partial snapshot of the environment’s state, we categorize the environment as
partially observed.

⋆ There are instances where the symbol for states, s, is used in contexts where it would be technically
more precise to use o for observations. This ambiguity particularly surfaces when discussing the agent’s
decision-making process. Notationally, it’s often conveyed that the agent’s action is dependent on the state,
s. However, in a many scenarios, the agent’s action depend on the observation, o, because the agent doesn’t
typically have complete access or knowledge of the true underlying state.

In the domain of Deep Reinforcement Learning (Deep RL), the representation of both states
and observations predominantly relies on real-valued vectors or higher-order tensor. This choice
of representation facilitates the handling and processing of complex data types and structures.
For illustrative purposes, consider a scenario where the environment provides a visual observation;
this can be aptly represented using a tensor corresponding to the RGB values of each pixel.
Similarly, when we are dealing with a robotic environment, the state might encompass information
about the robot’s kinematics, typically encapsulated through parameters such as joint angles and
velocities.

The literature offers several definitions of MDPs, particularly regarding the reward function,
which is often represented as R(s), R(s, a), or R(s, a, s′). While these expressions may differ, they
share equivalent expressive power. For instance, a stochastic reward function can be emulated
using a deterministic reward formulation by incorporating the reward into the state description.
In addition to the state, action, and reward definitions, some problem settings also consider

the initial state distribution, represented as µ(s). This distribution defines the probability
that the initial state s0 is sampled from, playing a significant role in shaping the initial steps of
the RL process.
In a finite MDP, random variables Rt and St possess well-defined discrete probability distri-

butions, which depend solely on the preceding state and action. For specific values r ∈ R and
s′ ∈ S, there exists a probability of these values occurring at time t, given particular values of
the preceding state and action. The transition probabilities from one time step to the next can
be represented as a function P : S × R × S × A → [0, 1], which is an ordinary deterministic
function[1]:

P(s′, r | s, a) = P{St+1 = s′, Rt+1 = r | St = s,At = a} (1)

Markov Decision Processes (MDPs) have been used to model a wide range of decision-making
problems across various domains, some read-world examples include:

• Robotics: In robotics, MDPs are employed for navigation and path planning tasks [5]

• Finance: MDPs have been used to model and solve portfolio optimization problems [7]

8

9

• Healthcare: MDPs have been employed in healthcare for personalized treatment recommen-
dation system [6]

§2.2 Episodic Reinforcement Learning

In the episodic setting of reinforcement learning, the agent’s experience is broken up into a series
of episodes – sequences with finite number of states, actions and rewards. Episodic reinforcement
learning in the fully-observed setting is defined by the following process. Each episode begins
by sampling an initial state of the environment, s0, from distribution µ(s0). Each time step
t = 0, 1, 2, . . . , the agent chooses an action at, sampled from distribution π(at, st). Then the
environment generates the next state and reward, according to some distribution P(st+1, rt | st, at).
The episode ends when a terminal state sT is reached.

State

Input Layer

...

Hidden Layer

...

Output Layer

...

Estimated parameter
θ

Policy
πθ(a|s)

Agent

Environment

(st+1, rt)

at

§2.3 Policy and Return

In reinforcement learning algorithms, assessing the value of an agent being in a particular state is
crucial. Almost all reinforcement learning algorithms involve estimates of how good is it for the
agent to be in a given state [1]. However, defining “how good” a state is can be ambiguous. In
RL, the value of a state is determined by anticipated future rewards, or more precisely, in terms
of expected rewards.

Of course the rewards the agent can expect to receive in the future depends on the actions it
will take. Accordingly, the values of states (i.e., the expected reward agent will receive from that
state on wards) are defined with respect to a policy.

In reinforcement learning, a policy is a strategy or set of rules that guides an agent’s decision-
making process, determining which action to take in a given state to maximize cumulative rewards
over time. Policies are just functions that take as input a state, St, and output a probability
distribution of actions. For a given state s ∈ S and action a ∈ A, the policy is defined as [8]:

9

Background Reinforcement Learning, Hanan Ather

Definition 2.2 (Policy) A policy is a mapping π : S → ∆(A), where ∆(A) is the set of
probability distributions over the action space A. A policy is deterministic if for any s ∈ S,
there exists a unique a ∈ A such that π(a|s) = 1. In this case, we can identify π : S → A. a

aThe given definition pertains to a stationary policy, as the action distribution does not rely on time.
Generally, a non-stationary policy can be characterized as a sequence of mappings πt : S → ∆(A),
indexed by t. Notably, in scenarios with a finite horizon, employing a non-stationary policy is often
essential for reward optimization

The objective in RL is to learn a policy, more precisely, the agent’s objective is to find a policy
that maximizes its expected (reward) return. The discounted return is defined as [1]:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · = γk
∞∑
k=0

Rt+k+1 (2)

Where γ ∈ [0, 1] is the discount-factor1. The return is a scalar-value that essentially summarizes a
(possibly) infinite sequence of immediate rewards. An important fact to note is that even though
this is an infinite sum, if γ < 1, Gt will be finite, as long as {Rk} is bounded [1]. If we set the
value of γ to 0, the agent will only consider immediate reward, and future rewards will be of no
consequence. Conversely, as γ → 1, the agent values future rewards more strongly [1]. The return
Gt for a given time step t can be expressed recursively as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · ·
= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + · · ·)
= Rt+1 + γGt+1 (3)

By breaking down the computation of expected returns into smaller, incremental steps, the
recursive property enables efficient updating of value estimates during the learning process. This
is particularly useful in temporal difference learning methods, such as Q-learning and SARSA,
where the value function is updated incrementally after each transition. This recursive property
allows RL algorithms to leverage current estimates of future returns, Gt+1, to improve the current
value estimate Gt. This process, known as bootstrapping, helps algorithms converge faster by
taking advantage of information already available, rather than waiting to accumulate the complete
return through the end of an episode. We will delve deeper into this idea in Section 3, where we
explore Temporal Difference learning and Q-learning.

In deep RL, we deal with parameterized policies: policies whose outputs are computable
functions that depend on a set of parameters (e.g., weights and biases of a neural network) which
we can adjust to change the behavior via some optimization algorithm.

§2.4 Goal of Reinforcement Learning

In reinforcement learning, we define the agent’s experience as a trajectory, which includes a
sequence of states, actions, and rewards. At each time step t, the agent is in a state st and takes
action at according to policy π(at | st), and transition probabilities to a new state st+1 according
to environment’s transition probabilities p(st+1 | st, at). A reward rt is also received.

pθ(s1,a1, · · · , sT ,aT) = p(s1)

T∏
t=1

πθ(at | st)p(st+1 | st)

⋆ A trajectory τ , also called an episode, is sequence of states, actions and rewards from the start to the
end of an episode, τ ≡ (s1,a1, · · · , sT ,aT). We will use the notation pθ(τ) to denote the probability of the
entire trajectory τ under policy parameters θ, and let R(τ) denote the total reward of the trajectory.

1The discount factor γ serves to model scenarios in which a future reward is considered less desirable than an
immediate reward of the same magnitude.

10

11

The distribution over trajectories under policy πθ is given by the product of an initial state
distribution, the policy probabilities for the actions, and the environment’s transition probabilities
for the state.

θ⋆ = argmax
θ

Eτ∼pθ(τ)

[∑
t

r(st,at)

]

The objective in reinforcement learning is to find the policy parameters θ of a policy πθ(at | st),
which is a conditional distribution over actions at conditioned states st, with respect to the
expectation of a reward function r(st, at).

Our goal is to maximize the expected return, where the return is defined as the sum of rewards
over trajectory. The expectation here is taken over the distribution of trajectories. The objective
reflects the goal of finding a policy that, on average, produces trajectories with high rewards as
possible, taking into account the randomness in the policy, the environment’s transitions, and the
initial state distribution.

§2.5 Value and State-Value Functions

Now we can define the notion of “value of a state” formally via value functions. Value functions
in RL are tools for estimating the long-term ‘value’ or desirability of being in a given state. They
allow the agent to access how good it is to be in a certain state, based on the expected cumulative
reward obtained from that point onwards. There are two types of value functions commonly used
in reinforcement learning: V π(s) and Qπ(s, a), we define them formally below [1], [8]:

Definition 2.3 (Value function) The value V π(s) for a fixed policy π at a given state s ∈ S
represents the expected reward obtained when initiating at state s and adhering to policy π :

• V π(s) = E
πtheta

[Gt | St = s]for all s ∈ S [1]

• finite horizon: V π(s) = E
πθ

[∑T
t=0 r(st, at) | St = s

]
[8]

• infinite discounted horizon: V π(St = s) = E
πθ

[∑+∞
t=0 γ

tr(st, at) | St = s
]
[8] a

aTechnically the notation should be: Eat∼π(st)Est since we are not just taking the expectation over the
random selection of an action at according to the policy distribution π(at | st), but we are also taking
the expectation over the states st reached and the corresponding reward values r(st, at). However, in RL
literature/textbooks the randomization with respect to the next state and reward function doesn’t seem
to be explicitly mentioned (to simplify notation perhaps)

An intuitive way of understanding Value Function is that it tells us how much “accumulated
future reward” we expect to obtain from a given state.

Starting from a state s ∈ S, to maximize reward, an agent naturally seeks a policy π with the
largest value Vπ(s). A remarkable result for finite MDPs in the finite horizon case, there exists
an optimal policy for all starting states s ∈ S. Formally, a policy π∗ is optimal if for any policy π
and any state s ∈ S, V π∗

(s) ≥ V π(s). We can prove that this optimal policy π∗ is deterministic
[8], and this proof can be found in Mohri et al. (2018).

Action-Value Function (Qπ): Represents the expected cumulative reward an agent can
obtain by taking an action a in a given state s and following a certain policy π thereafter.

11

Background Reinforcement Learning, Hanan Ather

Definition 2.4 (State-action value function) The state-action value function Q associated to
a policy π is defined for all (s, a) ∈ S ×A as the expected return for taking action a ∈ A at
state s ∈ S and then following policy π:

Qπ(st, at) = E
πθ

[Gt | St = s,At = a] = E
π

[
+∞∑
k=0

γtr(sk, ak) | St = s,At = a

]

V π(st) = Eat∼π(at|st)[Q
π(st, at)]

The motivation behind using value functions in RL is to guide the agents decision-making process.
By estimating the values of states or state-action pairs, the agent can choose actions that lead to
states with higher-long term rewards. We will see in next section that values serve as the basis
for various RL algorithms, such as Q−learning and SARSA.

Value functions V π and Qπ can be estimated through experience. For instance, if an agent
follows policy π and maintains an average for each state encountered, based on the actual returns
following that state, these averages will converge to V π(s) for all s ∈ S as the number of times
the state is encountered approaches infinity. By keeping separate averages for each action taken
in each state, these averages will converge to the action-values Qπ(s, a). Such estimation methods
are referred to as Monte Carlo methods because they involve averaging over numerous samples
of actual returns.

§2.6 The Bellman Equations

Value functions in reinforcement learning exhibit recursive relationships, like the one established
for the return in equation (3). For every policy π and state s, this recursive relationship exists
that links the value of s to the values of its potential subsequent states [1]:

V π(s) = Eπ[Gt | St = s]

= Eπ[Rt+1 + γGt+1 | St = s]

=
∑
a∈A

π(a | s)
∑
s′

∑
r

P(s′, r | s, a)[r + γEπ(Gt+1 | St+1 = s′)]

=
∑
a∈A

π(a | s)
∑
s′

∑
r

P(s′, r | s, a)[r + γV π(s′)], ∀s ∈ S

The equation represents a recursive formulation of the value function, and this is known as the
Bellman Expectation Equation [1], [4], [9]. The Bellman equation is a fundamental equation
in reinforcement learning and in dynamic programming.

⋆ In simple terms, the Bellman Equation decomposes the value function into immediate reward from taking
an action in the current state plus the discounted expected value of future states, while taking into account
all future possible actions.

The Bellman equation tells us that the value of any state must be equal to the expected reward
received from being in that state plus the (discounted) value of the expected next state. Another
more compact way to express the Bellman equation commonly found in the literature is:

V π(s) =
∑

a∈A(s)

π(a|s) ·
∑
s′

Pa
s,s′ [r(s, a) + γV π(s′)] (4)

The equation states that the value of a given state, V π(s) under π, is equal to the immediate
reward r(s, a) plus discounted value of the next state γV π(s′). Recall that V π(s′) is also an
expectation, and therefore, it is considering all possible actions and transitions to the next state,
weighted by their probabilities Pa

s,s′ = P(s′ | s, a).

12

13

Bellman Equation for Action-Value Function can be expressed in the same way:

Qπ(s, a) = Pa
s,s′ [r(s, a) + γ

V π(s)︷ ︸︸ ︷∑
a′

π(a′|s′)Qπ(s′, a′)] (5)

= Pa
s,s′ [r(s, a) + γV π(s)] (6)

Since,

V π(s) =
∑

a∈A(s)

π(a | s)Qπ(s, a)

§2.7 Finding Optimal Policies

Value functions allow us to create a hierarchical structure among policies, where a policy π is
deemed superior or equal to another policy π′ if it yields an expected return that is greater than
or equal to that of π′ across all states [4]. Thus, π ≥ π′ if and only if the condition Vπ(s) ≥ Vπ′(s)
holds true for every state s ∈ S [8]. For finite MDPs, there is always at least one policy that is
better than or equal to all other policies [1]. This is what we call the optimal policy. Although
there might be more than one, we denote all the optimal policies by π∗. The optimal policies
share the same state-value function and the action-value functions which we denote as V ∗ and
Q∗[4].

V ∗(s) = max
π

V π(s), ∀s ∈ S, a ∈ A

Q∗(s) = max
π

Qπ(s), ∀s ∈ S, ∀a ∈ A

⋆ A useful fact which will be leveraging is that we can express Q∗ in terms of V ∗:

Q∗(s, a) = E[Rt+1 + γV ∗(St+1) | St = s,At = a]

= E[Rt+1] + γ
∑
s′∈S

P[St+1 = s′|St = s,At = a]V ∗(St+1)

Note that Rt+1 is a random varible since we don’t know what future state s′ we will end up in, therefore,
we are taking the expectation E[Rt+1] over the dynamics of transition probabilities of the next state s′ we
reach.

Recall that all value functions v(s), must satisfy the recursive/self-consistency property estab-
lished in (4). This mean we can express V ∗ in a similar fashion. We write V ∗ without reference
to any specific policy because it is the optimal value function. We follow a similar derivation
which can be found in [1], [3], [4], [8]:

V ∗(s) = max
a∈A

Qπ(s), ∀s ∈ S

= max
a

Eπ∗ [Gt | St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1 | St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γV ∗(St+1) | St = s,At = a]

= max
a

∑
s′

∑
r

P(s′, r | s, a)[r + γV ∗(s′)], ∀s ∈ S (7)

This is known as the Bellman Optimality Equation. The equation expresses that “the value
of state under optimal policy must be equal to the expected for the best action from that state”
[1], and is used to compute the optimal value function which is usually denoted as V ∗(s) in

13

Tabular Algorithms Reinforcement Learning, Hanan Ather

literature. The Bellman optimally equation for Q∗(s, a) is:

Q∗(s, a) = E
[
Rt+1 + γmax

a
Q∗(St+1, a

′) | St = s,At = a
]

=
∑
s′,r

P(s′, r | s, a)
[
r + γmax

a
Q∗(St+1, a

′)
]

Why are Q∗ and V ∗ important?

• V ∗(s): When we have V ∗, determining the optimal policy becomes easy. The beauty of V ∗

lies in its ability to transform the greedy policy into the optimal policy in terms of long-term
rewards [1], as it takes into account the reward consequences of all possible future behaviors.
Through V ∗, the optimal expected long-term return is converted into a value that is readily
and locally accessible for each state, allowing for more efficient decision-making [1].

• Q∗(s, a): With Q∗ at hand, the agent can bypass one-step ahead search. For any state
s ∈ S, it can directly identify the action(s) that maximizes Q∗(s, a). The action-value
function serves as a cache for the results of one-step-ahead searches [1], offering the expected
long-term return as a value that is both locally and instantly accessible for each state-action
pair.

§3 Tabular Algorithms

Thus far we have been under the assumption that we have access to a model of the Markov
Decision Process (MDP) environment, which includes transition states defined by S and the
probabilities of the next state and reward given the current state and action2. However, in
real-world scenarios, we often lack access to an MDP model. When we don’t have a model, we
don’t have access to the environment’s dynamics such as transition probabilities, P(St+1 | St, At),
or rewards functions r(st+1, at, st) . Consequently, we cannot predict the next state and the
immediate reward you will receive when taking a specific action in a given state. Instead, the
agent must interact with the actual MDP environment to learn about it. Interacting with the
environment doesn’t provide transition probabilities; it simply presents a new state and reward
when an action is taken in a specific state. The environment supplies individual experiences of the
next state and reward, rather than the explicit probabilities of occurrence for the next states and
rewards. This raises a pertinent question: is it possible to compute the optimal value function or
optimal policy without access to a model?

§3.1 Dynamic Programing

Dynamic Programming (DP) is a mathematical approach used to solve complex problems by
breaking them down into simpler subproblems. It is particularly effective when the problem has
overlapping subproblems and optimal substructure. In the context of Reinforcement Learning, the
two main DP algorithms are Policy Iteration and Value Iteration. These algorithms involve
the evaluation and improvement of policies in order to find the optimal policy that maximizes
the expected cumulative reward.

The mathematical formulation for these algorithms involves the Bellman equations. For a given
policy π, the value function V π is defined as the expected return from each state, and satisfies
the following Bellman equation for policy evaluation:

V π(s) =
∑
a

π(s, a)
∑
s′,r

P(s′, r|s, a) [r + γV π(s′)] , ∀s ∈ S (8)

where P represents the state transition probability, and γ is the discount factor that determines
the present value of future rewards.

2By model we mean the transition states define by P, probabilities of next state and reward, given current state
and reward

14

15

In Policy Iteration, we alternately evaluate the current policy using the Bellman equation for
policy evaluation, and improve the policy by making it greedy with respect to the current value
function:

π′(s) = argmax
a

∑
s′,r

p(s′, r|s, a) [r + γV π(s′)] , ∀s ∈ S (9)

Value Iteration combines the policy evaluation and policy improvement steps into a single update:

Vk+1(s) = max
a

∑
s′,r

p(s′, r|s, a) [r + γVk(s
′)] , ∀s ∈ S (10)

The iterations continue until the value function (or the policy in policy iteration) converges, and
the final value function represents the maximum expected return from each state, under the
optimal policy.

In practical scenarios, Dynamic Programming (DP) is not commonly used to solve Reinforcement
Learning problems. This is primarily due to the following reasons:

• It’s challenging to extend DP to handle continuous actions and states. DP methods
typically require discretized states and actions, which can be impractical or infeasible for
many real-world problems.

• DP methods necessitate access to the environment’s model, specifically, the transition
probabilities P a

ss′ . In reality, such detailed information about the environment is rarely
available. Instead, we can only obtain samples from the environment by interacting with
it and collecting experiences. These experiences can then be used to approximate the
expectations via sampling-based methods, such as Temporal Difference (TD) learning
methods.

However, there are advantages to using DP, including: DP methods provide mathematically
precise solutions that can be formally expressed and analyzed. For smaller-scale problems,
with a few thousand states or few tens to hundreds of actions, DP could be the most suitable
method. It offers stability, simplicity, and straightforward convergence guarantees. While DP isn’t
always practical for larger or continuous problems, the concepts it introduces are foundational to
understanding more advanced reinforcement learning techniques we will be looking in the next
section(s).

§3.2 Monte Carlo Learning

Monte Carlo (MC) methods in reinforcement learning involve learning from complete sample
returns. For a given policy, π, MC methods estimate the value-function vπ(s) or qπ(s, a) as the
average of the returns observed in a number of episodes.
The return Gt at a time-step t in an episode is defined as the cumulative discounted reward

from that time-step onwards:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .

where Rt+i is the reward after i steps, and γ is the discount factor.
The estimate V (s) for the value of a state s is obtained by averaging the returns following all

visits to s. We maintain a sum S(s) and a count N(s) for each state s:

S(s) =
∑

t∈visits(s)

Gt, N(s) = number of visits to s

Finally, the value of state s is estimated as:

vπ(s) ≈ V (s) =
S(s)

N(s)

One major advantage of Monte Carlo methods is that they do not require a model of the
environment; they learn directly from raw episodes of experience. These methods are both
conceptually simple and easy to implement.

15

Tabular Algorithms Reinforcement Learning, Hanan Ather

Algorithm 1 Monte Carlo ES (Exploring Starts) for estimating π ≈ π∗

1: procedure MonteCarloES(S,A, γ)
2: Initialize π(s) ∈ A(s) arbitrarily for all s ∈ S
3: Initialize Q(s, a) arbitrarily for all s ∈ S and a ∈ A(s)
4: Initialize Returns(s, a) as an empty list, for all s ∈ S and a ∈ A(s)
5: while True do ▷ Loop forever (for each episode)
6: Choose S0 ∈ S, A0 ∈ A(S0) randomly such that all pairs have probability > 0
7: Generate an episode from S0, A0, following π : S0, A0, R1, . . . , ST−1, AT−1, RT

8: G← 0
9: for each step of episode, t = T − 1, T − 2, ..., 0 do

10: G← γG+Rt+1

11: if the pair St, At is unique in S0, A0, S1, A1, . . . , St−1, At−1 then
12: Append G to Returns(St, At)
13: Q(St, At)← average(Returns(St, At))
14: π(St)← maxa Q(St, a)
15: end if
16: end for
17: end while
18: end procedure

§3.3 Temporal difference learning

The Temporal-Difference (TD) learning method is prevalently employed in reinforcement learning
applications [15].. TD learning is a method for estimating the expected cumulative future reward,
or “value,” of each state in an environment. This value is updated at each time increment based
on the difference between the predicted value of a state and the observed value after taking
an action and transitioning to a new state [1], [4]. TD learning leverages a hybrid approach
that combines Monte Carlo’s model-free experience-based value estimation with the benefits of
dynamic programming’s capability to calculate values utilizing present estimates alone [10].

V (St)← V (St) + α(Rt+1 + γ · V (St+1 − V (St)) (11)

• We refer to Rt+1 + γ · V (St+1) as the TD target

• We refer to δt = Rt+1 + γ · V (St+1)− V (St) as TD error

The TD target is a (biased) estimate of Gt [1]. The TD control algorithm can update the Q-value
function after each time step.

§3.4 Generalized Policy Iteration (GPI)

Virtually every reinforcement learning (RL) control algorithm has its roots in the fundamental
principle of Generalized Policy Iteration (GPI). However, the exact implementation of GPI varies
and differs from one algorithm to another. Therefore, prior to delving into the specifics of RL
Control algorithms, its crucial to thoroughly understand the overarching concept of GPI.
The term Generalized Policy Iteration (GPI) refers to the approach of interweaving Policy-

Evaluation and Policy-Improvement procedures. GPI assess the Value function for a given policy,
π, using any Policy Evaluation method, and subsequently improves the policy using any Policy
Improvement method.

That is, the policy consistently improves itself in relation to the Value Function, while the Value
Function moves towards the Value Function corresponding to the policy. If both the evaluation
process and improvement process reach an equilibrium (i.e., no further changes transpire), then
the resulting policy and Value Function must be optimal.

The value function reaches stability once it aligns with the current policy, i.e., when the policy
evaluation step is complete. The policy, on the other hand, stabilizes when it becomes greedy
with respect to the current value function, that is, during the policy improvement step. Both
processes reach an equilibrium when a policy that is greedy with respect to its own evaluation

16

17

function is found. This is the optimal policy, where any further changes neither improve the value
function nor the policy itself.

Within the Generalized Policy Iteration framework, both an approximate policy and approximate
value function are maintained. The Value Function is continually modified to more closely
approximate the true Value Function of the current policy, while the policy is perpetually
improved in relation to the existing Value Function. While these two modifications are somewhat
counteractive – each sets a dynamic target for the other – their combined effect drives both the
policy and Value Function towards optimally. Policy evaluation is performed through experience
from many episodes, with the approximate value function converging asymptotically to the true
function.

One of the most important features of the GPI framework is its ability to accommodate ’partial’
policy improvement. The term ’partial’ here encompasses a broad range of computations, any of
which contribute either to a full policy evaluation or towards policy improvement. Consequently,
GPI offers flexibility to transition between policy evaluation and policy improvement without the
need for completely exhaustive policy evaluation or complete policy improvement. For instance,
we do not have to wait for policy evaluation computations to fully converge before proceeding
with policy improvement.

The policy improvement theorem provides a guarantee that each successive policy πk+1 is
uniformly superior to, or at least as effective as, its predecessor πk. In situations where πk+1 is
equivalent to πk, they are both classified as optimal policies. This implies that the overall process
will ultimately converge to an optimal policy and corresponding optimal value function.

In the context of Monte Carlo policy iteration, it is intuitively appealing to alternate between
evaluation and improvement on a per-episode basis. Following each episode, the observed returns
serve as inputs for policy evaluation, after which the policy undergoes refinement at all the states
encountered during the episode.

§3.5 Why Q−function for Control?

The Q-function serves as the an evaluative metric for state-action pairs (s, a), under a specific
policy π. Recall that the value of (s, a) is the expected cummulative discounted reward obtained
from taking action a in state s, followed by adherence to policy π in the subsequent course of
actions. In situations where an environmental model is not available, alongside determining
the value of various states, an agent needs to also consider alternative moves and the expected
consequences of making those moves.

⋆ The Qπ(s, a) function assigns a numerical value to each potential action, this value can be used to
determine of the most optimal move to execute in a given state.

One of the key advantages of Qπ(s, a) is its provision of a direct strategy for agent action.
Agents can compute Qπ(s, a) for each feasible action a ∈ A(s) within a given state s, and select
the action the action with the highest value. When Qπ(s, a) is optimal, it gives the maximum
expected value from taking action a in state s, representing the best potential performance if the
agent were to operate optimally in all future states. Hence, a knowing Q(s, a) is automatically
yields an optimal policy.

On the other hand, in order to utilize V π(s) for action selection, the agent needs to experiment
with each of the available actions a ∈ A(s) in a state s, observe the consequent state transition to
s′, and keep track the resulting reward. Only then can an agent can act optimally by choosing
the action leading to the highest expected cumulative discounted reward, E[r+ V π(s′)]. However,
in situations where state transitions are stochastic, that is, where taking action a in state s can
result in varying next states s′, the agent might have to replicate this process repeatedly to
acquire a reliable estimate of the expected value from a specific action. This one-step look-ahead
requirement for V π often poses a challenge in RL Control problems. Qπ(s, a) circumvents this
issue by directly learning the value of (s, a), thereby storing the one-step look-ahead for each
action a in every state s. Therefore, for Control algorithms, which select actions based on a
learned value function generally approximate the approximate Qπ(s, a).

17

Deep Reinforcement Learning Reinforcement Learning, Hanan Ather

§4 Deep Reinforcement Learning

§4.1 Value Function Approximation

Function approximation in reinforcement learning is a method used to estimate state-value
functions and the policy functions. The value function is not longer represented as a table but
instead as a parameterized functional form with a weight vector w residing in Rd.
Commonly, we denote v̂(s,w) ≈ vπ(s) to signify the approximate value of state s given the

weight vector w. For instance, v̂ could be a function computed by a neural network, with w
serving as the weight vector for all connections. By fine-tuning these weights, the neural network
progressively refines its approximation, moving ever closer to accurately representing the true
value function. This continual fine-tuning allows the network to adapt and improve its predictions
over time, enhancing its understanding of the environment and its dynamics. Often, the number
of weights is fewer than the number of states. As a consequence, when a single state undergoes
an update, the modification proliferates from that state, influencing the values of other states.
Similar to supervised learning, value function approximation just boils down to finding the

specific parameter vector, denoted as w, which minimizes the loss between the real value function,
Vπ(s), and its approximation, denoted as V̂ (s;w). Generally use mean squared error and define
the loss as

J(w) = Eπ[(V
π(s)− V̂ (s;w))2]

By minimizing this loss, we improve the accuracy of the approximated value function, bringing it
closer to the true value function and thereby improving the performance of our model. We can
use gradient descent to find a local minimum:

∆w = −1

2
α∇wJ(w)

where,

∆wJ(w) = ∆wEπ[(V
π(s)− V̂ (s;w))2]

= Eπ[2(V
π(s)− V̂ (s;w))∆wV̂ (s,w)]

The majority of prediction methods can be viewed as updates to an estimated value function
that nudges its value at a specific state toward a ‘backed-up value’ or an update target. An
individual update can be represented as St 7→ Ut, where St represents the state and Ut denotes the
update target towards which the estimated value of St is shifted. For example, the Monte Carlo
Update for value prediction, characterized as St → Gt, and the Temporal Difference (TD(0))
update, depicted as St → Rt+1 + γv̂(St+1, wt).
Each update in reinforcement learning can be viewed as a training instance analogous to

supervised learning. Function approximation methods in reinforcement learning receive examples
of the input-output behavior of the function they aim to approximate. This allows us to use
supervised learning techniques for value function approximation by treating each s→ u update
as a training instance. The resulting approximate function is then interpreted as an estimated
value function.

§4.2 State-Value Function Approximation

Analogous to value function approximation, we also use function approximation to estimate
the state-value functions: Q̂π(St, At). In control problems the parametric approximation of the
action-value function is represented as Q̂(s, a,w) ≈ q∗(s, a), where w ∈ Rd is a finite dimensional
weight vector. Instead of St 7→ Ut, we now consider examples of the form (St, At) 7→ Ut.

• St represents the state at time t

• At is the action taken at time t.

Here, we’re using (St, At) as an example to predict Ut, which is our update target. The update
target Ut can be any approximation of the action-value function such as the Monte Carlo return, n-
step SARSA target, or Q-learning target. The key idea here is to use experiences to incrementally

18

19

improve the approximation of the state-value, with the aim of improving the policy based on that
approximation. Like in supervised learning the most convenient way to accomplish this is by
minimizing the mean-squared error between the true 3 action-value function Qπ(s, a) and the
approximate action-value function:

J(w) = Eπ[(Q
π(s, a)− Q̂π(s, a;w))2]

Use stochastic gradient descent to find a local minimum

∆(w) = α∇wJ(w)

= αE[Qπ(s, a)− Q̂π(s, a;w))∇wQ̂
π(s, a;w)]

Just as in policy evaluation, the true state-action value function for a state is not known, and as
such, we utilize a target value as a substitute.

• Monte Carlo Target:

∆w = α
(
Gt + γQ̂(s′, a′;w)− Q̂(s, a;w)

)
∇wQ̂(s, a;w)

• SARSA Target:

∆w = α
(
r + γQ̂(s′, a′;w)− Q̂(s, a;w)

)
∇wQ̂(s, a;w)

• Q-learning:

∆w = α
(
r + γmax

a′
Q̂(s′, a′;w)− Q̂(s, a;w)

)
∇wQ̂(s, a;w)

Theoretically, any supervised learning approach could be employed to estimate value functions.
However, not all function approximation techniques are equally appropriate or efficacious when
applied to reinforcement learning. Many statistical machine learning algorithms rely on a static
training set derived from a stationary distribution. In contrast, reinforcement learning generates
data sequentially as the agent interacts with its environment or a model of the environment. It is
important that learning can occur in an online environment, and to facilitate this, supervised
learning techniques that can approximate non-stationary target functions are required. For
instance, in control methods based on Generalized Policy Iteration, our objective is to learn Qπ

while π undergoes changes. Even if the policy remains constant, the target values of training
examples become non-stationary if they are generated by bootstrapping methods like Dynamic
Programming or Temporal Difference learning. Thus, it is crucial to recognize that methods
incapable of handling such non-stationary data are less suitable for reinforcement learning.

§5 Deep Q-Networks (DQN)

§5.1 Why Neural Networks?

Linear value function approximators assume that the value function is essentially a weighted
combination of a set of features, each of which is a function of the state. This approach to
value function approximation can be effective given an appropriate set of features. However,
it often necessitates the careful manual design of this feature set, which can be a complex and
time-consuming process.
An alternative is to leverage a more sophisticated class of function approximators that can

process states directly without the need for an explicit feature specification. Local representations,
such as those based on kernel approaches, have certain appealing properties. These include the
ability to converge under certain conditions. However, these methods often struggle to scale
effectively when dealing with large spaces and data sets.

3In practice we won’t have access to the true action-value function

19

Deep Q-Networks (DQN) Reinforcement Learning, Hanan Ather

Deep Neural Network (DNN) approximators offer significant benefits in this context. First
and foremost, DNNs are universal function approximators, capable of representing a wide variety
of complex functions. Compared to shallow networks, they can potentially represent the same
functions with exponentially fewer nodes or parameters, which is a significant advantage when
dealing with high-dimensional data. Furthermore, the parameters of a DNN can be learned using
stochastic gradient descent, an efficient and well-established optimization technique. This makes
DNNs a powerful tool for function approximation in reinforcement learning, particularly when
dealing with large and complex state spaces.

§5.2 Q-Learning via Function Approximation

In Deep Reinforcement Learning we can use deep neural networks to represent the Value function,
Policy, or Model. For now, we focus on how we can approximate the value function, in subsequent
sections we will see how deep neural networks can also be employed directly for policy approx-
imation. As in the case of policy evaluation, the true state-action value function is unknown.
Therefore, we substitute it with a surrogate, or an approximation, which we refer to as the target
value, denoted as Q(s, a). This target value function serves as our best estimate for the true
state-action value function. This is similar to the gradient calculation in linear value function
approximation, but here the gradient is computed with respect to a more complex function, a
deep neural network, rather than a simple linear function:

∆w = α
(
r + γmax

a′
Q̂(s′, a′;w)− Q̂(s, a;w)

)
∇wQ̂(s, a;w)

Taking a step back, it’s important to recall that in tabular Q-learning each state-action pair is
assigned a Q-value, and these values are updated iteratively until the values convergence to obtain
the optimal Q-function, Q∗(s, a). However, now we are adopting a different approach, instead
of maintaining a table of Q-values, we will use a function approximator (like a neural network)
parameterized by weights, to represent the Q-function. The objective in this case is to adjust the
weights of the function approximator to minimize the mean squared error (MSE) between the
predicted Q-values and the target Q-values via stochastic gradient descent. The target Q-values
are based on the Bellman equation, using the current estimates of the Q-values, rather than the
true Q-values (which are unknown). This allows us to derive a gradient for updating the weights
of the function approximator.

However, this strategy can lead to divergence in Q-learning with Value Function approximation
(VFA), posing a significant challenge to the learning process. Two primary issues contribute to
this problem: the correlations between samples, and the non-stationarity of the targets. These
factors can disrupt the learning dynamics and lead to instability. Deep Q-Learning (DQN)
was developed to address these issues. The technique introduces two key modifications to the
traditional Q-learning procedure:

1. Experience Replay: DQN stores the agent’s experiences at each time-step in a data set
known as a replay buffer. During the learning updates, DQN randomly samples mini-batches
from the replay buffer. This strategy breaks the correlation between consecutive samples,
making the data more independent identically distributed (i.i.d.) data, which is more
amenable to learning.

2. Fixed Q-targets: In DQN, the network weights used to compute the target Q-values are
held fixed for a number of updates, and only then updated to the current weights of the
Q-network. This strategy reduces the non-stationarity of the targets, leading to more stable
learning.

§5.3 Experience Replay

Algorithms that operate off-policy, like DQN, have the advantage of re-using experiences, rather
than discarding after one update. Off-policy methods, such as Deep Q-Networks (DQN), learn
from the experiences of a different policy (the behavior policy), while improving another (the
target policy). The advantage here is that experiences (state, action, reward, next state tuples)

20

21

can be stored in a replay buffer and can be sampled multiple times. Since each experience can
be reused multiple times, this makes the learning process much more data efficient. This notion
was first descirbed in 1992 by Long-Ji Lin’s paper, where he introduced the term “experience
replay”. Lin’s critical insight was that Temporal Difference (TD) learning, could be inherently
slow due to its dependence on a trial and error approach for data acquisition. Deep Q-Networks
(DQNs) introduced by Mnih et al., 2013, have successfully employed Experience Replay to enhance
the sample efficiency and stability of learning in Reinforcement Learning environments. The
Experience Replay mechanism forms the foundation for facilitating temporally uncorrelated
learning processes by maintaining a replay buffer, also called the experience pool, which stores
the agent’s interactions with the environment.

• Experience Collection: As the agent operates within the environment, each interaction
generates a tuple of state, action, reward, and next state - denoted as (s, a, r, s′). This
tuple, also known as an experience or transition, is stored are stored in a data structure
called the replay buffer or replay memory denoted as D. This buffer has a fixed size, so
older experiences are discarded when the buffer is full.

• Random Sampling: Instead of only learning from the most recent experience as in
traditional Q-learning, DQNs also learn from a random sample of previous experiences
drawn from the replay buffer. This is known as experience replay.

(s, a, r, s′) ∼ D

• Computing Q-value Targets and Loss: The agent learns by computing a loss between
the Q-value predictions from the DQN and the target Q-values computed from sampled
experiences. The target Q-value for an action is the reward for taking that action plus the
maximum Q-value for the next state, discounted by a factor gamma (γ):

r + γmax
a′

Q(s′, a′;w)

• Network Update:: The parameters of the DQN are then updated using a form of gradient
descent to update the network weights.

∆w = α
(
r + γmax

a′
Q̂(s′, a′;w)− Q̂(s, a;w)

)
∇wQ̂(s, a;w)

§5.4 DQNs: Fixed Q-Targets

The second key improvements introduced by Mnih et. al. in Human-level Control through Deep
Reinforcement Learning to help to stabilize training was the use of Target Networks. It was
motivated by the fact that in original DQN algorithm, Q(s, a) is constantly changing because it
depends on Q̂(s, a;w). During training the Q-network parameters w are adjusted to minimize
the difference between Q(s, a) and Q̂(s, a;w), but this is difficult when Q(s, a) changes at each
training step.

To help improve stability, we use a second neural network, with different weights, w− called
the target network.

This is simply a lagged copy of the Q-network Q̂(s, a;w)4. This network is a copy of the
original network, which gets updated less frequently (i.e., the weights are “frozen” for a number
of steps before being updated to match the current weights of the original network). This use of
a target network helps to stabilize the training process by making the targets more consistent
across updates. As the name suggests, the target network Q̂(s, a;w−) is used to compute the

4The original DQN update does not include the use of a target network. The use of a target network is an
extension to the original DQN, which was introduced to further stabilize the training process.

21

Policy Gradient Methods Reinforcement Learning, Hanan Ather

estimated Q(s, a) from the Bellman Equation:

Q(s, a) = r +max
a′

+Q̂(s, a;w) Original DQN update

Q(s, a) = r +max
a′

+Q̂(s, a;w−) Modified Bellman update

Periodically w− is updated to the current values for w. This is known as a replacement update.
The update frequency for w− is problem dependent. For example, in the Atari games it is
common to update w− every 1,000–10,000 environment steps. For simpler problems it is not
necessary to wait as long. Updating w− every 100–1,000 time steps will be sufficient.

§6 Policy Gradient Methods

Thus far, all of the methods we looked at have been centered on value functions. These methods
relied on learning the values associated with different actions, by estimating the Qπ(s, a) or V π(s)
functions, followed by the selection of actions based on their estimated values. The policies
function were implicitly/indirectly derived from the estimates of state-action value function.
Policy Gradient Methods are a class of reinforcement learning algorithms that learn a
parameterized policy that can select actions without a value function.

We denote the policy’s parameter vector as θ, which is an element of the d-dimensional
real number space Rd. In this notation, πθ(a | s) represents the probability that the policy
parameterized by θ will select action a when the environment is in state s at time t. More
formally, πθ(a | s) = Pθ{At = a | St = s}, where St and At represent the state of the environment
and the action taken by the agent at time t, respectively. This function πθ(a | s) forms the basis
of our policy and dictates how the agent should act in different states for optimal learning and
performance.

As we saw in chapter 1, 12, objective function of RL is:

θ⋆ = argmax
θ

Eτ∼pθ(τ)

[∑
t

r(st,at)

]
︸ ︷︷ ︸

J(θ)

Before delving into the optimization of the Reinforcement Learning (RL) objective, let’s first
understand how we can evaluate it. Given a policy πθ, we aim to estimate the value of the RL
objective, denoted as J(θ). This objective is the expected cumulative reward for trajectories τ
sampled according to the policy πθ, formally expressed as Eτ∼pθ(τ) [

∑
t r(st,at)], where r(st,at)

represents the reward at time t for state-action pair (st,at).

As we can run our policy, which essentially means sampling from the initial state distribution
and the transition probabilities, we can approximate J(θ) by generating ”rollouts” or trajectories
from our policy. Thus, the RL objective can be empirically approximated as:

J(θ) = Eτ∼pθ(τ)

[∑
t

r(st,at)

]
≈ 1

N

N∑
i=1

+∞∑
t=0

r(si,t, ai,t) (12)

Here, we run our policy in the ”real-world” N times to generate N sampled trajectories.
The notation si,t and ai,t represents the state and action respectively at time step t in the ith

sampled trajectory. Having generated these samples using πθ(a | s), we can obtain an unbiased
estimate for the expected total reward by summing the rewards along each sampled trajectory
and subsequently averaging these sums over all samples. The accuracy of our approximation
improves as N increases, implying that the more samples we generate, the closer our estimate is
to the actual expected value.

In practical applications of Reinforcement Learning (RL), our main goal isn’t merely to estimate
the objective J(θ), but rather to improve it. To this end, we need an efficient approach for

22

23

estimating the gradient of the objective, enabling us to enhance the policy πθ.
Policy gradient methods offer a viable strategy for this task. These methods work by learning

the policy parameter θ through the gradient of a scalar performance measure J(θ), akin to the
loss function in conventional machine learning. The overarching aim of policy gradient methods
is to maximize performance, achieved by making updates that emulate gradient ascent in the
performance measure J . This iterative process can be succinctly represented as:

θt+1 = θt + α∇̂J(θt) (13)

Here, θt+1 refers to the updated policy parameter, θt represents the current policy parameter,
and α is the learning rate, determining the magnitude of updates in each step. Importantly,

∇̂J(θt) symbolizes a stochastic estimate of the gradient of the performance measure J , with
respect to θt at time t. The ”hat” signifies that it is an estimated, rather than the exact, gradient.

The distinctive feature of this estimate is that it can be calculated through sampling, without
requiring knowledge of the initial state probabilities or transition probabilities. The expectation
of this estimate approximates the true gradient of the performance measure J . This mechanism
effectively allows us to adjust θ in the direction that is expected to yield the maximum improvement
in J on average.

⋆ Policy gradient methods just boil down to learning the policy parameters based on the gradient of some
scalar performance measure J(θ) with respect to the policy parameters. Policy gradient methods seek to
maximize performance (i.e. maximize cumulative reward) so the updates approximate gradient ascent in J :

θt+1 = θt + α∇θJ(θt)

We will see that all policy gradient methods essentially follow this recipe.

§6.1 Policy Gradient Theorem

Theorem 6.1 (Policy Gradient Theorem) — For any differentiable policy πθ(a|s), the gradient
of the expected return J(θ) with respect to the policy parameters θ is given by:

∇θJ(θ) = Eπθ
[∇θ log πθ(at|st) ·Qπθ (st, at)]

where Qπθ is the action-value function induced by following policy πθ. This expression states
that the direction of the greatest increase of the expected return is given by the expected
value of the product of two terms: the gradient of the log-probability of the action taken at
time step t and corresponding action-value.

a.

aAll policy gradient methods are based on this theorem, and their differences lie in how they estimate the
action-value function Qπ(s, a), and how they deal with the high variance of the policy gradient estimator.

Proof. Chapter 13.2 in Sutton & Barto has a nice derivation of the policy gradient theorem for
episodic tasks and discrete states.

This is a foundational theorem for policy gradient methods as it allows us to estimate the
gradient of the performance measure with respect to the policy parameters by sampling trajectories
under the policy. The estimate is then used to update the policy parameters using gradient ascent,
with the aim of improving the policy performance.

§6.2 Score Function Estimator

In many machine learning problems, particularly in reinforcement learning, we often need to
optimize the expectation of a function f(x) under a probability distribution p(x;θ), parameterized
by θ. The function f(x) could, for example, represent the reward or cost associated with the
action or state x. To optimize this expectation, we often leverage the properties of the score
function. In statistics, the score function represents the gradient of the log-likelihood function

23

Policy Gradient Methods Reinforcement Learning, Hanan Ather

concerning the parameter vector. When evaluated at a specific point on this vector, the score
function reveals the slope of the log-likelihood function, highlighting its sensitivity to minute
changes in parameter values.

score = ∇θ log pθ(x)

To compute the gradient of this expectation, we can’t directly swap the gradient and the
expectation (or integral or sum), because the expectation is over x and the gradient is w.r.t θ,
and x and θ are not independent (because x is drawn from a distribution parameterized by θ).
Here, a technique known as the log-derivative trick or score function trick comes to our rescue.
This trick allows us to rewrite the gradient of the expectation in a way that enables us to estimate
it by sampling from the distribution p(x;θ). This trick relies on the following identity: The
log-derivative trick just consists of applying the chain rule to a composite function in which the
outer most term is a logarithm. In our case the score function happens to be in such a form, with
log being the external term and pθ(x) the internal one.

⋆ It follows that we can apply the log-derivative trick straight away to get:

∇θ log pθ(x) =
1

pθ(x)
· ∇θ log pθ(x) =

∇θpθ(x)

pθ(x)

The last term is called the score ratio. The log-derivative trick can be quite helpful. For
instance, exploiting this trick we can notice an interesting property of the score function: its
expected value is equal to zero:

Epθ
[∇θ log pθ(x)] = Epθ

[
∇θpθ(x)

pθ(x)

]
=

∫
pθ(x)

∇θpθ(x)

pθ(x)
dx = ∇θ

∫
pθ(x)dx = ∇θ · 1 = 0

The property is fundamental in the context of control variates, which is a variance reduction
technique used in Monte Carlo Methods. It exploits information about the errors in estimates of
known quantities to reduce error of an estimate of an unknown quantity.
The expectation of this score function under the distribution p(x;θ) is denoted as:

Ex∼p(x|θ)[f(x)] =

∫
x

p(x;θ)f(x)dx (14)

for discrete variables, or

Ex∼p(x|θ)[f(x)] =
∑
x

p(x;θ)f(x) (15)

for discrete variables.
When our goal is to maximize this expectation with respect to the parameters θ, we need to

compute the gradient of this expectation. The Policy Gradient methods perform exactly this
operation.

∇θEx∼p(x|θ)[f(x)] = Ex∼p(x|θ)[f(x)∇θ log p(x;θ)] (16)

Proof.

∇θEx[f(x)] = ∇θ

∑
x

p(x)f(x) (definition of expectation)

=
∑
x

∇θp(x)f(x) (swap sum and gradient)

=
∑
x

p(x)
∇θp(x)

p(x)
f(x) (both multiply and divide by p(x))

=
∑
x

p(x)∇θ log p(x)f(x) (use the fact that ∇θ log(z) =
1

z
∇θz)

= Ex[f(x)∇θ log p(x;θ)] (definition of expectation)

24

25

∇θEpθ
[f(x)] = ∇θ

∫
pθ(x)f(x) dx

=

∫
∇θpθ(x)f(x) dx

=

∫
pθ(x)

∇θpθ(x)

pθ(x)
f(x) dx

=

∫
pθ(x)∇θ log pθ(x)f(x) dx

= Epθ

∇θ log pθ(x)︸ ︷︷ ︸
score

f(x)︸︷︷︸
cost

In the context of policy gradients, p(x;θ) is the policy π(a|s;θ), f(x) is the return (or some
estimate of it) following action x (often denoted as a for action in policy gradient methods), and
we seek to maximize the expected return by adjusting the policy parameters θ. The resulting
policy gradient estimate is:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)Qπθ (st, at)

]
(17)

where J(θ) denotes the expected reward under policy π parameterized by θ, τ is a trajectory
generated by the policy πθ, T is the trajectory’s length, log πθ(at|st) represents the log-probability
of taking action at under state st, and Qπθ (st, at) is the action-value function of action at at state
st under policy πθ.

§6.3 Deriving Policy Gradient

Here, we consider the case of a stochastic, parameterized policy πθ. We aim the maximize the
expected return J(θ) = Eτ∼πθR(τ). For the purposes of this derivation, we’ll take R(τ) to give
the finite-horizon un discounted return, but the derivation for infinite-horizon discounted return
setting is almost identical.
We would like to optimize the policy by gradient ascent:

θk+1 = θk + α∇θJ(θ) |θk

We now consider a policy parameterized by θ, represented as πθ. This policy is inherently
stochastic. Our main objective is to maximize the expected return, which can be formally
expressed as:

J(θ) = Eτ∼πθ
[R(τ)]

Here, τ is indicative of a trajectory, and R(τ) computes the return corresponding to this trajectory.
For this derivation, R(τ) represents the finite-horizon undiscounted return. However, it’s worth
noting that the derivation would remain largely analogous if we were considering the infinite-
horizon discounted return. To optimize the policy, gradient ascent is employed, updating the
policy parameters in the direction of the gradient to achieve higher returns:

θk+1 = θk + α∇θJ(θ)

∣∣∣∣
θk

Where α is the learning rate that determines the step size in the direction of the gradient.
The gradient of the policy performance, ∇θJ(θ), is called the policy gradient. Algorithms

crafted around this optimization technique bear the name policy gradient algorithms. In the
following discourse, we embark on deriving the elementary form of this expression. Subsequent
sections will delve deeper, enhancing this rudimentary form to culminate in the sophisticated
versions predominantly employed in standard policy gradient algorithm implementations.

We’ll begin by laying out a few facts which are useful for deriving the analytical gradient.

25

Policy Gradient Methods Reinforcement Learning, Hanan Ather

1. Trajectory Distribution. The probability of a trajectory τ = (s1,a1, · · · , sT ,aT) given
that actions come from πθ is

pθ(s1,a1, · · · , sT ,aT) = p(s1)

T∏
t=1

πθ(at | st)p(st+1 | st)

2. Log-Derivative Trick The log-derivative trick is based on a simple rule from calculus:
the derivative of log x with respect to x is 1

x . When rearranged and combined with chain
rule, we get:

∇θPθ(τ) = Pθ(τ)∇θPθ(τ)

3. Log-Probability of a Trajectory The log-prob of a trajectory is

log [pθ(s1,a1, · · · , sT ,aT)] = log p(s1) +

T∑
t=1

log πθ(at | st) +
T∑

t=1

log p(st+1 | st)

4. Grad-Log-Probability of a Trajectory.

∇θ

[
log p(s1) +

T∑
t=1

log πθ(at | st) + log p(st+1 | st)

]
= ∇θ

T∑
t=1

log πθ(at | st)

The derivation of the score function gradient estimator tells us that

∇θEτ∼pθ
[R(τ)] = Eτ∼pθ

[∇ log pθ(τ)R(τ)]

Proposition 6.2 (Derivation of Policy Gradient Estimator).

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)R(τ)

]
(18)

Proof.

∇θJ(θ) = ∇θEτ∼πθ
[R(τ)]

= ∇θ

∫
τ

Pθ(τ)R(τ) definition of expectation

=

∫
τ

∇θPθ(τ)R(τ) bring gradient under integral

=

∫
τ

∇θPθ(τ)∇θPθ(τ)R(τ) Log-derivative trick

= Eτ∼πθ
[∇θ logPθ(τ)R(τ)]

= Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)R(τ)

]

It is somewhat remarkable that we are able to compute the policy gradient without knowing
anything about the system dynamics, which are encoded in the transition probabilities. The
intuitive interpretation is that we collect a trajectory, and increase its log probability based on
how “good” the trajectory was. That is, if the reward R(τ) is very high, we ought to move in the
direction in parameter space that increases log pθ(τ).
One of the salient features of the policy gradient method is its ability to optimize the policy

without explicit knowledge of the system dynamics. These dynamics are typically captured in
the form of transition probabilities. The underlying intuition for this is anchored in the principle
of trajectory optimization. Essentially, given a trajectory, the aim is to enhance its log probability

26

27

contingent upon the trajectory’s quality. In more concrete terms, if a trajectory garners a high
reward, denoted by R(τ), the logical step is to adjust the policy parameters in a manner that
augments the log probability log pθ(τ). This adjustment indicates a positive correlation between
the quality of a trajectory and its likelihood under the policy.

⋆ Note: trajectory length and time-dependence. Here, we are considering trajectories with length T ,
whereas the definition of MDPs and POMDPs above assumed variable or infinite length, and stationary
(time-independent) dynamics. The derivations in policy gradient methods are much easier to analyze with
fixed length trajectories – otherwise we end up with infinite sums. The fixed-length case can be made to
mostly subsume the variable-length case, by making T very large, and instead of trajectories ending, the
system goes into a sink state with zero reward.

In the above derivation, we have expressed the policy gradient as an expectation. By the
properties of expectations, we can approximate this expression using the sample mean. Suppose
we collect a collection of trajectories, denoted by D = {τi}Ni=1. Each trajectory, τi, is a result
of the agent interacting with its environment according to the policy πθ. Given this, the policy
gradient can be approximated as:

ĝ =
1

|D|
∑
τ∈D

T∑
t=0

∇θ log πθ(at|st)R(τ),

where |D| represents the total number of trajectories in the collection.
To effectively estimate the policy gradient using this approach, it is crucial that our policy

representation facilitates the calculation of ∇θ log πθ(a | s). Furthermore, our ability to execute
the policy in a given environment and accumulate a relevant trajectory dataset is equally vital.
Now lets come back to our expression for policy gradient:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)R(τ)

]

Taking a step with this gradient pushes up the log-probabilities of each action in proportional to
R(τ), the sum of all rewards ever obtained. But this doesn’t make much sense. Rewards obtained
before taking an actions should have no bearning on how good that action was: only rewards
that come after.

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)
T∑

t′=t

rt′

]
In this form, actions are only reinforced based on rewards obtained after they are taken 5.

We’ll call this form the reward-to-go policy gradient, because the sum of rewards after a point
in a trajectory,

R̂t =
T∑

t′=t

rt′

is called reward-to-go from that point, and this policy gradient expresision depends on the
reward-to-go from state-action pairs.

§6.4 Monte Carlo Policy Gradient

The policy gradient theorem can be used to derive a basic policy-gradient algorithm: the
REINFORCE algorithm (Willams, 1992) [21]. The REINFORCE algorithm, also known as the
Monte Carlo Policy Gradient method, is a simple method for learning policies directly from the
policy gradient. The algorithm starts by initialize policy parameters θ arbitrarily. For each
episode:

• Generate an episode by following policy πθ: S0, A0, R1, . . . , ST , where T is the final time
step.

5The formula we started with included terms fro reinforcing actions proportional to past rewards, all of which

27

Policy Gradient Methods Reinforcement Learning, Hanan Ather

• For each time step of the episode t = 0, 1, . . . , T − 1:

– Compute the return Gt = Rt+1 + γRt+2 + . . .+ γT−t−1RT .

– Update policy parameters using the policy gradient:

θ ← θ + αγtGt∇θ log πθ(At|St).

This algorithm makes use of the policy gradient theorem as it uses full-episode rollouts to compute
the returns Gt and then it updates the policy parameters in the direction that maximizes the
expected return in the long run.

The policy is updated in the direction of more reward by increasing the log-probability of the
taken action proportional to the received return Gt. If the return is positive, the log-probability of
the taken action is increased, which in turn increases the probability of this action being selected
in the same state in the future. On the other hand, if the return is negative, the update decreases
the log-probability of the taken action, thus discouraging the selection of this action in the same
state.

While simple and effective, the REINFORCE algorithm suffers from high variance in the
gradient estimates, which can make the learning unstable. Various techniques, such as using a
baseline or using more advanced policy gradient methods, can be employed to reduce the variance
and improve the performance.

Algorithm 2 REINFORCE algorithm

Require: Initialize weights θ of a policy network πθ

1: for each episode do
2: Sample a trajectory following π(θ): τ = (s0, a0, r0, ..., sT , aT , rT)
3: Set ∇θJ(πθ) = 0
4: for each step of the episode t = 0, 1, ..., T do
5: Rt(τ)←

∑T
t′=t γ

t′−trt′

6: ∇θJ(πθ) = ∇θJ(πθ) +Rt(τ)∇θ log πθ(at|st)
7: end for
8: θ ← θ + α∇θJ(πθ)

6

We are interested in finding how we could shift the distribution through its parameter θ to
increase the scores of its samples, as judged by f . In the case if policy gradients the f(x) is our
reward function or advantage function, and p(x;θ) is the policy distribution or policy network.

§6.5 Baselines

Next we will discuss how we can modify policy gradient calculation to reduce its variance, and in
this way obtain a version of the policy gradient that can be used as a practical reinforcement
learning algorithm. It turns out that we can show that subtracting a constant b from our rewards
in policy gradient will not actually change the gradient in expectation, although it will change
its variance. Meaning that doing this trick will keep our gradient estimator unbiased. So we are
going to use the same convenient identity from before:

E[∇θ log pθ(τ)b] =

∫
pθ(τ)∇θ log pθ(τ)bdτ =

∫
∇θpθ(τ) log pθ(τ)bdτ = b∇θ

∫
pθ(τ)dτ = b∇θ·1 = 0

This means that subtracting b will keep our policy gradient unbiased but it will actually alter its
variance.

The policy gradient theorem can be generalized to include a comparison of the action value to
an arbitrary baseline b(s) without changing it in expectation:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)

(
T∑

t′=t

R(st′ , at′ , ss′+1)− b(t))

)]

28

29

The baseline can be any function, even a random variable, as long as it does not vary with a; the
equation remains valid because the subtracted quantity is zero.

The most common choice for baseline is the on-policy value function V π(st). Recall that this
is the average return an agents gets if it starts in state st and then acts according to policy π
for the rest of its action. Empirically, the choice of b(st) = V π(st) has the desirable effect of
reducing variance in the sample estimate for the policy gradient. This results in faster and more
stable policy learning. It is also appealing from conceptual angle: it encodes the intuition that an
agents gets what it expects, it should “fee” neutral about it.

In practice V π(st) cannot be computed exactly, so it has to be approximated. This is usually
done with a neural network Vϕ(st), which is updated concurrently with the policy (so that the
value network always approximates the value function of the most recent policy).

The simplest method for learning Vϕ used in most implementations of policy optimization
algorithms is to minimize the mean-square-error objective:

ϕk = argmin
ϕ

Est,R̂t∼πk

[(
Vϕ(st)− R̂t

)2]
where πk is the policy at epoch k.

§6.6 Generalizing Policy Gradients

What we have seen so far is that the policy gradient has the general form

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)Φt)

]
,

where Φt could be
Φt = R(τ),

or

Φt =

T∑
t′=t

R(st′ , at′ , stt′+1),

or

Φt =

T∑
t′=t

R(st′ , at′ , ss′+1)− b(t)

All of these choices lead to the same expected value of the policy gradient, despite having different
variances. There are two more valid choices of weights Φt which are import.
On-Policy Action Value Function. The choice

Φt = Qπθ (st, at)

is also valid.
Advantage Function. Recall that the adavantage of an action is defined by Aπ(st, at) =
Qπ(st, at)− V π(st), which describes how much better or worse a action is than other actions on
average (relative to current policy). The formulation of policy gradients with advantage functions
is extremely common, and there are many different way of estimating advantage function used in
different algorithms.

§7 Advantage Actor-Critic

In the domain of Reinforcement Learning (RL), one-step return in Temporal Difference (TD)
learning has demonstrated a favorable trade-off. Although it introduces a bias, its variance is
often significantly reduced compared to the actual return. The Actor-Critic paradigm combines
the two concepts in RL: policy gradients and value functions. This methodology is characterized
by its dual components that are trained in tandem:

29

Advantage Actor-Critic Reinforcement Learning, Hanan Ather

Algorithm 3 Vanilla Policy Gradient (VPG)

Require: Initial policy parameter θ0, initial value function parameters ϕ0

1: for k= 1,2, . . . do
2: Collect a set of trajectories Dk = {τi} by executing policy πk = πθk in the environment.

3: Compute the rewards-to-go R̂t.
4: Compute advantage estimates, Ât based on current value function Vϕk

.
5: Estimate the policy gradient:

ĝk =
1

|Dk|
∑
τ∈D

T∑
t=0

∇θ log πθ(at|st)Ât

6: Update the policy parameters using the policy gradient:

θk+1 ← θk + αkĝk

7: Fit value function by regression:
ϕk+1 =

8: end for

• The actor : Responsible for learning a parameterized policy that dictates the agent’s
behavior.

• The critic: Tasked with estimating the value of state-action pairs, offering a gauge for the
decisions made by the actor.

One of the driving forces behind the actor-critic design is the insight that a well-trained critic can
provide a more informative feedback signal to the actor than the raw, sometimes sparse, rewards
that can be obtained directly from the environment7.

The policy gradient theorem tells us that we can improve this policy by ascending the gradient
of the expected cumulative reward. In REINFORCE, this gradient is estimated using Monte
Carlo samples of the return, and the policy update rule is as follows:

θ ← θ + α∇θ log πθ(a|s)R(τ)

In Advantage Actor-Critic methods, we instead use the advantage function A(s, a) as a reinforcing
signal. The advantage function measures how much better an action a is compared to the average
action in state s. Therefore, the update rule in Advantage Actor-Critic methods is:

θ ← θ + α∇θ log πθ(a|s)A(s, a)

The Advantage function A(s, a) is defined as the difference between the Q-value of taking action
a in state s and the V-value of state s:

A(s, a) = Q(s, a)− V (s)

⋆ REINFORCE solely relies on the total reward from entire trajectories, whereas Advantage Actor-Critic
refines this approach by using the advantage function to inform its updates

REINFORCE: θ ← θ + α∇θ log πθ(a|s)R(τ)

Advantage Actor-Critic: θ ← θ + α∇θ log πθ(a|s)A(s, a)

The central idea behind actor-critic methods is that these two components, the actor and the
critic, work together to find the optimal policy. The critic informs the actor how to update its
policy, by evaluating the chosen actions, and the actor uses this feedback to make better-informed
actions in the future.
7This suggests that the internal evaluation of decisions, via the critic, might expedite and refine the learning

process of the agent’s behavior, compared to merely relying on external feedback.

30

31

§7.1 The Advantage Function

Its worth understanding that the advantage function has a number of useful properties that are
quintessential for grasping its significance in reinforcement learning.

1. Expectation of Zero: Consider the mathematical relation:

Ea∈A[A
π(st, a)] = 0.

This conveys that when all possible actions possess equivalent reward, the value of Aπ will
be zero across all actions. In the process of training policies using Aπ, this ensures that
the likelihood of choosing any action remains invariant. Compare this to reward signals
rooted in absolute state or state-action values in equivalent scenarios might have an constant
uniform value, it would actively encourage (if positive) or discourage (if negative) the action
taken.

2. Intuitive Feedback: Envision a circumstance where the selected action is inferior compared
to the average, yet still anticipates a positive return; that is,

Qπ(st, at) > 0 but Aπ(st, at) < 0.

The logical inference here is that the likelihood of such an action should decrease due to the
presence of superior alternatives. In this context, feedback from Aπ(st, at) closely aligns
with our intuition, decreasing the probability of action. However, utilizing V π or Qπ in
conjunction with a baseline might paradoxically amplify its likelihood due to the positive
return.

3. Comparative Evaluation: The advantage function is a relative measure. For a specific
state s and its corresponding action a, it juxtaposes the value of the state-action duo,
Qπ(s, a), against the value of the state, V π(s). This paradigm is instrumental in ensuring
actions are neither unduly penalized for the policy’s current unfavorable state nor excessively
rewarded for an advantageous one. This perspective recognizes that an action predominantly
sways future trajectories, without influencing the preceding sequence of events that resulted
the policy into its current state.

§7.2 Estimating Advantage

To compute the advantage function Aπ, estimates for Qπ and V π are essential. One approach
could be to separately train different neural networks to learn Qπ and V π. However, this approach
presents two main drawbacks: (1) the estimates might not align well with each other, and (2) the
learning process becomes less efficient. Therefore, it is more common to learn V π and then use it
in conjunction with rewards from a trajectory to approximate Qπ.

There are two primary reasons why learning V π is generally more advantageous than learning
Qπ. First, Qπ is a more complex function, which requires more samples for an accurate estimation.
This can become an issue, especially in scenarios where both the actor and the critic are being
trained simultaneously. Second, computing V π from Qπ can be computationally demanding. To
obtain V π from Qπ, one must calculate the values for all possible actions in a given state s, and
then compute an action-probability weighted average.

Let’s examine how to approximate Qπ using V π. The Q function, representing the expected
return of executing action a in state s and subsequently following policy π, can be formulated
as a combination of the immediate reward and the expected future rewards, as given by the
value function. Specifically, the Q function can be decomposed into the immediate reward r(s, a)
accrued by taking action a in state s, in addition to the discounted sum of expected future
rewards under policy π.

Qπ(st, at) = r(s, a) + γEτ∼π[V
π(s)]

If we assume for a moment that we have a perfect estimate of the V π(s), then the Q−function

31

Advantage Actor-Critic Reinforcement Learning, Hanan Ather

can be rewritten as a mix of the expected rewards for n time steps, followed by V π(sn+1):

Qπ(st, at) = Eτ∼π[rt + γrt+1 + γ2rt+2 + · · ·+ γnrt+n]γ
n+1[V π(st+n+1)]

≈ rt + γrt+1 + γ2rt+2 + · · ·+ γnrt+n + V̂ π(st+n+1)

We employ a single trajectory of rewards (rt + γrt+1 + γ2rt+2 + · · ·+ γnrt+n) as a substitute
for the expectation, and insert V̂ π, which is learned by the critic. This equation balances bias
against variance. The n-step actual rewards are unbiased but exhibit high variance since they
are derived from a single trajectory. In contrast, V̂ π has lower variance as it averages over all
trajectories observed thus far, but it is biased due to its reliance on a function approximator.

The rationale for combining these two kinds of estimates lies in the typical behavior of actual
rewards’ variance as the time steps away from t increase. Near the time t, the benefits of an
unbiased estimate may outweigh the variance introduced. As n increases, the variance is likely to
become increasingly problematic, making it more effective to switch to an estimate with lower
variance but some bias. The number of steps of actual rewards, denoted by n, controls this
trade-off between bias and variance.

By combining the n-step estimate for Qπ with V̂ π, we arrive at a formula for approximating
the advantage function:

Aπ
Nstep = Qπ(st, at)− V π(st)

≈ rt + γrt+1 + γ2rt+2 + · · ·+ γnrt+n + V̂ π(st+n+1)− V̂ π(st)

The number of steps of actual rewards, denoted by n, modulates the variance in the advantage
estimator and serves as a hyperparameter that requires tuning. A smaller n yields an estimator
with lower variance but higher bias, while a larger n produces an estimator with increased variance
but reduced bias.

§7.3 Generalized Advantage Estimation

Reinforcement learning algorithms, while powerful, are often plagued with the challenge of variance
in their estimates. In particular, the advantage function, which measures the relative quality
of an action taken in a state compared to the average action, is susceptible to high variance,
especially when based on the n-step return estimate.

Generalized Advantage Estimation (GAE), proposed by Schulman et al., [?] addresses the
dilemma of choosing a fixed number of steps, n, for the return estimate. Instead of constraining
ourselves to a singular choice of n, GAE ingeniously takes a weighted average of advantages
calculated over different values of n ranging from 1 to k. This approach aims to achieve a balance:
reduce the variance substantially while keeping the introduced bias minimal.

At a high level, one can intuitively think of GAE as an estimator that leverages information
from multiple temporal horizons. By not committing to a fixed horizon, it captures a broader
perspective of the environment dynamics and policy performance.

TD Error: Temporal Difference (TD) error is a measure of the mismatch between the estimated
value of a state and the observed return. It’s given by:

δt = rt + γV π(st+1)− V π(st) (19)

where rt is the reward at time t and γ is the discount factor.

Generalized Advantage Estimation: The main idea behind GAE is to compute a weighted
average of the n-step truncated advantage estimators. This can help in reducing the variance and
stabilizing the training. The generalized advantage estimator is given by:

A
GAE(γ,λ)
t = (1− λ)(A1

t + λA2
t + λ2A3

t + . . .)

= δt + (γλ)δt+1 + (γλ)2δt+2 + . . .
(20)

where λ is a hyperparameter that determines the trade-off between bias and variance of the

32

33

advantage estimates. Using the TD errors, this estimator can be computed in a recursive manner:

A
GAE(γ,λ)
t = δt + γλA

GAE(γ,λ)
t+1 (21)

With GAE, one can smoothly interpolate between the one-step TD error (high variance, low bias)
and the full Monte Carlo return (low variance, high bias) by adjusting the value of λ.

§8 Advanced Policy Gradient Methods

Policy gradient methods, while powerful, often face the risk of performance collapse. This issue
is particularly prevalent in on-policy algorithms, making them sample-inefficient due to their
inability to reuse data. To counteract these challenges, Proximal Policy Optimization (PPO) was
introduced by Schulman et al. [20].

PPO aims to ensure stable and consistent policy improvement through a surrogate objective
function. This function not only prevents abrupt performance degradation but also facilitates the
use of off-policy data. By modifying the original objective J(θ) with the PPO objective, methods
like REINFORCE or Actor-Critic can achieve more stable and sample-efficient training.

§8.1 Performance Collapse and Surrogate Objective

Given a policy πθ, its optimization involves updating the policy parameters θ based on the policy
gradient ∇θJ(θ). This method is considered indirect since it seeks the optimal policy in the
policy spac ewhich we do not have direct control over. The underlying reason for this indirectness
can be better understood by distinguishing between policy and parameter spaces.

During the optimization process, we traverse a sequence of policies π1, π2, π3, . . . , πn within
the set of all possible policies, known as the policy space Π. It’s worth noting that Π can contain
an uncountably infinite number of policies 8:

Π = {πi : i ∈ R}

When the policy is parameterized as πθ, we can define the parameter space for θ. Every distinct
θ parameterizes a unique instance of the policy. The parameter space is given by:

Θ = {θ : θ ∈ Rm}

While the objective J(πθ) is determined using trajectories produced by a policy in the policy
space, πθ ∈ Π, the search for the optimal policy primarily takes place in the parameter space by
identifying the right parameters, θ ∈ Θ. Essentially, our control is in Θ, but the outcome is in Π.
In practice, the magnitude of parameter updates is controlled using a learning rate α:

∆θ = α∇θJ(πθ)

However, a key challenge arises as the mappings between the policy space and the parameter space
might not always align congruently. Even if two pairs of parameters, such as θ1, θ2 and θ2, θ3,
have equivalent distances in the parameter space, their corresponding policies might not have
the same distances in the policy space. More formally, given the equality d(θ1, θ2) = d(θ2, θ3), it
doesn’t necessarily imply that:

dθ(πθ1 , πθ2) = dθ(πθ2 , πθ3)⇔ dπ(πθ1 , πθ2) = dπ(πθ2 , πθ3)

The non-congruent mapping between the policy space Π and the parameter space Θ presents a
potential problem. Specifically, the optimal learning rate α can fluctuate based on the location
of the current policy πθ within Π and how the current parameter θ relates to the vicinity of
πθ. In an ideal scenario, an algorithm would adaptively adjust the step size in the parameter
space contingent on these dynamics. To derive an adaptive step size based on how a particular

8This implies that policies can be indexed by real numbers, i.e., i ∈ R

33

Advanced Policy Gradient Methods Reinforcement Learning, Hanan Ather

update in parameter space will affect policy space, we first need a way to measure the difference
in performance between two policies.

§8.2 Monotonic Improvement Theory

In reinforcement learning optimization, a crucial goal is to ensure non-decreasing policy perfor-
mance. To achieve this, we define the measure of performance differences between two policies,
thereby enhancing the policy gradient objective for monotonic improvement.

Addressing step size is pivotal. By constraining the step size, we mitigate risks of performance
degradation, leading to the Monotonic Improvement Theory.
Given an existing policy π and its subsequent iteration π′, the relative policy performance

identity quantifies the difference in their objectives.

Theorem 8.1 (Relative Policy Performance Identity) — For any policies π and π′:

J(π′)− J(π) =

∞∑
t=0

Eτ∼π′ [γtAπ(st, at)]

Proof.

J(π′)− J(π) = Eτ∼π′

[∞∑
t=0

γtAπ(st, at)

]

= Eτ∼π′,st+1,rt∼p(·|st,at),at∼π′

[∞∑
t=0

γtAπ(st, at)

]

= Eτ∼π′

[∞∑
t=0

γt (R(st, at, st+1) + γVπ(st+1)− Vπ(st))

]

= Eτ∼π′

[∞∑
t=0

γtR(st, at, st+1) +

∞∑
t=0

γ + t+ 1Vπ(st+1)−
∞∑
t=0

Vπ(st)

]

= Eτ∼π′

[∞∑
t=0

γtR(st, at, st+1)

]
+ Eτ∼π′

[∞∑
t=0

γ + t+ 1Vπ(st+1)−
∞∑
t=0

Vπ(st)

]

= J(π′) + Eτ∼π′

[∞∑
t=0

γ + t+ 1Vπ(st+1)−
∞∑
t=0

Vπ(st)

]
= J(π′)− Vπ(s0)

= J(π′)− J(π)

The relative policy performance identity, J(π′) − J(π), quantifies policy improvement. A
positive difference indicates the improvement of the new policy π′ over π. In policy iteration, the
goal is to select a π′ that maximizes this difference. Hence, maximizing J(π′

θ) is equivalent to
maximizing this identity:

max
π′

J(π′)⇔ max
π′

(J(π′)− J(π))

This perspective underscores the importance of ensuring non-negative (monotonic) improvements
in each policy iteration, i.e., J(π′)− J(π) ≥ 0. In the worst-case scenario, choosing π′ = π yields
no improvement. This formulation prevents performance collapses during training, which achieves
the desired robustness in policy optimization.

Given the expression Eτ∼π′ [
∑∞

t A(st, at)], the expectation requires sampling trajectories from
the new policy π′ for an update. However, π′ is only available after the update. We need an
approach that leverages the available old policy, π.

By assuming that successive policies, π and π′, are close (in terms of KL divergence), we infer
that their state distributions are analogous. Thus, the relative policy performance identity in 8.1

34

35

can be approximated using trajectories from the old policy, τ ∼ π, and adjusted by importance

sampling weights9 given by π′(at|st)
π(at|st) . This effectively adjusts the returns generated under π by

the ratio of action probabilities between π and π′. The resulting approximation is termed the
surrogate objective:

J(π′)− J(π) = Eτ∼π

[∑
t

Aπ(st, at)

]

≈ Eτ∼π

[∑
t

Aπ(st, at)
π′(at|st)
π(at|st)

]
= JCPI

π (π′)

We call JCPI
π (π′) the surrogate objective because it contains a ratio of new and old policies, π′

and π, and the superscript CPI stand for “conservative policy iteration”.

Before using JCPI
π (π′) as the objective for the policy gradient algorithm, there is one final

requirement to satisfy. Specifically, JCPI
π (π′) serves as an estimate for J(π′) − J(π), hence it

inherently contains some error. For the robustness of our approach, it’s essential to ensure
J(π′)− J(π) ≥ 0 when utilizing the approximation JCPI

π (π′) ≈ J(π′)− J(π). This necessitates a
deeper understanding of the approximation error.

When successive policies π and π′ are proximate, as measured by their KL divergence, one can
write a relative policy performance bound. The absolute error, defined as the difference between
the actual objective J(π′) and the anticipated improvement JCPI

π (π′), can be constrained with
respect to the KL divergence of π and π′. This is introduced in the paper ”Constrained Policy
Optimization” by Achiam et al. (2017) [22]:

∣∣J(π′)− J(π)− JCPI
π (π′)

∣∣ ≤ C
√
Et[KL(π′(at|st)||π(at|st))] (22)

Here, C is a constant and KL denotes the Kullback-Leibler divergence. The above inequality
emphasizes that when π and π′ are close in their distributions, KL divergence on the right hand
side is low, and the approximation error of JCPI

π (π′) for J(π′)− J(π) is minimal.

§8.3 Trust Region Policy Optimization Problem

For optimization, one approach is to impose a constraint on the expectation of the KL divergence:

Et[KL(π′(at|st)||π(at|st))] ≤ δ

Here, δ bounds the KL divergence, constraining how much the new policy π′ can deviate from the
old policy π. This ensures the selection of candidate policies close to π in the policy space, defining
a trust region. The constraint Et[KL(π′(at|st)||π(at|st))] is termed the trust region constraint.
Notably, this constraint operates on an expectation over a singular time step t.

Expressing the objective JCPI
π (π′) with this perspective:

JCPI
π (π′) = Et

[
π′(at|st)
π(at|st)

Aπ(st, at)

]
And, given that the objective maximization is with respect to θ, the policies are represented in
terms of θ:

JCPI(π′) = Et

[
πθ(at|st)
πθold(at|st)

Aπθold (st, at)

]
Combining the surrogate objective with the trust region constraint, the optimization problem

can be written as:

9Importance sampling estimates a desired distribution using samples from a different, known distribution.

35

Advanced Policy Gradient Methods Reinforcement Learning, Hanan Ather

max
θ

Et

[
πθ(at|st)
πθold(at|st)

Aπθold (st, at)

]
subject to Et[KL(πθ(at|st)||πθold(at|st))] ≤ δ (23)

It’s worth noting that JCPI
π (π′) is a linear approximation to J(π′)−J(π) given that its gradient

matches the policy gradient. It also guarantees monotonic improvement to within an error bound.
To account for potential errors and to ensure continued improvement, the trust region constraint is
imposed. By ensuring policy changes remain within this trust region, we can overcome significant
performance degradation [22].

Several algorithms aim to address this trust region optimization challenge, notable among them
are Natural Policy Gradient (NPG) [23], Trust Region Policy Optimization (TRPO) [24], and
Constrained Policy Optimization (CPO) [22].

The theoretical foundations behind these algorithms are intricate, compounded by the challenge
that these algorithms are hard to implement. Furthermore, computing their gradients can be
computationally taxing. Additionally, selecting an optimal value for δ proves to be non-trivial.
These algorithms are beyond the scope of this project. However, their inherent challenges
underscore the motivation for our next algorithm.

§8.4 Proximal Policy Optimization

The Proximal Policy Optimization Algorithms (PPO) was introduced by Schulman et al. in 2017
[20]. With its ease of implementation, computational efficiency, and the elimination of the need
to select δ, PPO has become one the most popular policy gradient algorithms.

PPO is a family of algorithms designed to address the trust-region constrained policy optimiza-
tion problem through efficient heuristics. Two primary variants exist: one based on adaptive
KL penalties and the other on a clipped objective. To delve deeper, let’s simplify the surrogate
objective JCPI

π (π). Define

rt(θ) =
πθ(at|st)
πθold(at|st)

and denote Aπθold as At for conciseness, since we know advantages are always calculated using
the older policy. This allows us to express the objective as:

JCPI(π) = Et

[
πθ(at|st)
πθold(at|st)

Aπθold (st, at)

]
= Et[rt(θ)At]

8.4.1 Adaptive KL Penalty Algorithm

The first PPO variant employs an adaptive KL penalty, described by the objective:

max
θ

Et[rt(θ)At]− βKL(πθ(at|st)||πθold(at|st)) (24)

Here, β is an adaptive coefficient dictating the magnitude of the KL penalty. A higher β value
results in a more pronounced difference between πθ and πθold . A primary challenge lies in the
selection of a constant coefficient, as different problems exhibit distinct characteristics, finding a
universal β is challenging. Moreover, within a single problem, the loss landscape undergoes changes
with policy iterations. Thus, a β value that was efficient initially might prove sub-optimal later on.
To address this, the PPO algorithm introduces a heuristic-based rule for dynamically updating β.
After each policy update, β is recalibrated, ensuring its applicability for the subsequent iteration.

8.4.2 PPO with Clipped Surrogate Objectives

The PPO-Clip variant of PPO modifies the surrogate objective without relying on the KL
constraint. The objective is defined as:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]

36

37

Where:

• Êt is the empirical expectation over timesteps.

• rt(θ) represents the probability ratio of new to old policies.

• Ât is the advantage estimate at time t.

• ϵ is a small hyperparameter, typically set to 0.1 or 0.2.

The clip operation ensures the ratio rt(θ) is within the interval [1−ϵ, 1+ϵ]. This objective controls
policy updates to ensure stability. The objective function includes two terms, and optimization
attempts to maximize the minimum of these two terms. The first, rt(θ)Ât, is the conventional
policy gradient objective. The second, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât, is a clipped variant, constraining
policy deviations if the ratio rt(θ) exits [1− ϵ, 1 + ϵ].

§9 Experiments

§9.1 Optimization as Reinforcement Learning

Optimization is a critical area of study in mathematics with applications in many scientific and
industrial domains. Traditional optimization techniques have played instrumental roles in diverse
arenas. For instance, they’ve streamlined supply chain operations, enhanced financial portfolio
returns, optimized energy production, and significantly improved machine learning models. These
successes underscore the ubiquitous importance and effectiveness of optimization methodologies
across various fields.
Inspired by seminal works such as Andrychowicz et al.’s [19] and Li and Malik’s [18],this

research explores the use of RL in function optimization, with the convex functions serving
as a test cases. We explore automating the design of unconstrained optimization algorithms,
which are some of the most powerful and ubiquitous tools in all areas of science and engineering.
We view the the algorithmic design problem from the perspective of reinforcement learning,
and we formulate the algorithmic design problem as a reinforcement learning problem. Under
this framework, any particular optimization algorithm just corresponds to a policy. We reward
optimization algorithms that converge quickly and penalize those that do not. Learning an
optimization policy is then reduces to finding an optimal policy, which can be solved using any
reinforcement learning method.
To initiate the optimization, x(0) is chosen from the function’s domain. At every successive

iteration, a step vector, ∆x, is derived based on a specific formula which serves as the means to
adjust the current iterate. Mathematically, the step vector is often expressed as a function of
past and current gradients of the objective function. In gradient descent, this vector is a scaled
version of the negative gradient, whereas, in momentum-based approaches, it resembles a scaled
exponential moving average of the gradients. A concise representation of this iterative procedure
can be found in the following algorithm [18]:

Algorithm 4 Continuous Optimization Framework

1: Input: Objective function f
2: x(0) ← random point in the domain of f
3: for i = 1, 2, . . . do
4: ∆x← π({x(j), f(x(j)),∇f(x(j))}i−1

j=0)

5: if Stopping condition then return x(i−1)

6: end if
7: x(i) ← x(i−1) +∆x
8: end for

The presented framework encapsulates a broad spectrum of existing optimization algorithms.
The uniqueness of each optimization algorithm is attributed to the distinct choice of the function
π. First-order optimization methods use a π that’s solely dependent on the gradients of the
objective function. Second-order techniques integrate both the gradient and the Hessian of the

37

Experiments Reinforcement Learning, Hanan Ather

objective function to determine π. For instance, gradient descent can be exemplified by the
subsequent selection of π:

π({x(j), f(x(j)),∇f(x(j))}i−1
j=0) = γ∇f(x(i−1))

Here, γ represents the step size or, equivalently, the learning rate. Furthermore, extending this
understanding to the gradient descent method with momentum, we deduce:

π({x(j), f(x(j)),∇f(x(j))}i−1
j=0) = γ

i−1∑
j=0

αi−1−j∇f(x(j))

In this context, γ retains its meaning as the step size, while α is the momentum decay factor.

Therefore, learning the functional π effectively translates to learning the underlying optimization
algorithm. However, since modeling general functionals is challenging, we restrict the dependence
of π on the objective function f to the objective values and the gradients evaluated at the current
and past locations. Hence, π can be modeled as a function from the objective values and gradients
taken along the trajectory so far, {x(j), f(x(j)),∇f(x(j))}i−1

j=0, to the step vector.
We observe that the execution of an optimization algorithm execution parallels the execution

of a fixed policy within a Markov Decision Process (MDP). The state amalgamates the current
location, objective values, and gradients spanning current to past locations. Meanwhile, the action
corresponds to the step vector, and transition probabilities are partly defined by the location
update equation, x(i) ← x(i−1) +∆x. Consequently, the policy π is synonymous with the MDP’s
fixed policy. For this reason, we will use π to denote the policy at hand. Under this formulation,
searching over all policies corresponding to searching over all possible first-order optimization
algorithms.
We model the update formula as a neural network. Therefore, by learning the weights of the

neural network, we can learn an optimization algorithm. Parameterize the update formula as a
neural network has two appealing properties:

• Universality in functional approximation due to the inherent expressiveness of neural
networks.

• Efficiency in search operations due to the amenability of neural networks to backpropagation.

Our approach uses on reinforcement learning to determine the policy π. For optimization
algorithms, the key performance metric is convergence speed. To penalize policies that converge
slowly or show undesirable behaviors, the reward for a given state is set as the negative of
the objective value at the current location, thus promoting faster attainment of the function’s
minimum.
To do so, we need to define a reward function, which should penalize policies that exhibit

undesirable behaviour during their executing.For optimization algorithms, the key performance
metric is convergence speed. To penalize policies that converge slowly or show undesirable
behaviors, the reward for a given state is set as the negative of the objective value at the current
location. This encourages the policy to reach the minimum of the objective function as quickly
as possible.

§9.2 Optimization of single-variable continuous functions

We begin by investigating the an RL approach for optimization of single-variable continous
functions. We employ the Policy Gradient method, REINFORCE, to learn an optimal policy
function for minimizing. We tested the model on a simple quadratic function f(x) = x2.
The state consists of:

• Current point x in the domain

• A history of previous values

• Gradients at the previous points

38

39

Actions and Rewards: An action is a proposed step in the domain of the function. After each
action, the reward is given as the negative value of the function at the new point, prompting the
agent to find the minimum.
Policy Model: The agent’s policy is represented using a neural network, PolciyNetwork, which
takes the environment state as input and outputs the mean of a normal distribution. The input
layer size corresponds to the dimensions of the state (3 in this case). The network has a hidden
layer of 128 neurons with ReLU activation, and the output layer consists of 1 neuron with a
tanh activation function, representing the mean of the proposed normal distribution for action
sampling. The actual action is sampled from this distribution. The agent was trained over 1500
episodes on the function f(x) = x2, initialized at a random point between −1 and 1. The learning
rate was set to 1× 10−3 and the Adman optimizer was used for policy updates. The cumulative
reward for episode was recorded to monitor the agents performance.

Figure 3: Optimization of a single-variable continuous function. This diagram displays the same
reward function at two different scales. In the first diagram, it appears that the agent
achieves the optimal reward instantly. However, when we adjust the scale of the y-axis
in the second diagram, we observe variability in the agent’s reward.

Visual inspection of the plotted results in Figure 3 indicates that over time the agent is learning
to move in the direction the minimum point of the function. One interesting observation is that
initially the agent achieves a very poor total reward (i.e., the agent takes steps that move away
from the minimum, since by definition the reward is negative value of the function), and after
some number of episodes, the begins to perform much “better”, relatively speaking. We noticed
in our training was always this relative spike in the performance of the agent, however, the exact
number of episodes it took for the agent to learn a policy that could achieve this performance spike
was very sparse. Our hypothesis for this behaviour is, the agent’s trajectories are significantly
influenced by its past trajectories. And our policy (neural network) updates its parameters based
on those trajectories. We hypothesize that, in the ‘early’ phase of training, which in the above
diagram would be the first 800 episodes, the agent might be stuck in a negative feedback loop
where it keeps generating “bad” trajectories and uses these “bad trajectories” to update its
parameters in a non-optimal way.

We compared our learned policy to classic gradient descent. We can see in Figure 4 that
RL agent achieves function values comparable to those of gradient descent. While gradient
descent steadily approaches and stabilizes at the function’s minimum, the RL agent exhibits
oscillatory behavior, never truly converging. There are may reasons why the agent exhibits the
behaviour, most likely explanation is that we are are using Gaussian policy parameterized by
neural network with a constant variance term. There remains some irreduicle variance due to the
design choices we made for the policy. This can be easily remedied applying by various techniques
such decaying the step size, decaying the variance of the gaussin policy based on the number of
iterations or even treating the variance, σ2, as a learnable parameter which our policy outputs.
Our experiment highlights both the strengths and challenges of using Reinforcement Learning for
optimization tasks. It’s evident that while RL could potentially serve as a tool for optimization, it
may not always be the most practical approach. Traditional optimization techniques like gradient
descent are much simpler to use, as they require no training. However, it is possible that in
complex landscapes where traditional methods underperform, our RL methodology for learning
an optimization algorithm could be applied and over perfrom relative to traditional optimization

39

Experiments Reinforcement Learning, Hanan Ather

Figure 4: Performance comparison between Gradient Descent and the RL-based optimization
policy over 100 iterations.

algorithms.

9.2.1 Direct Jump Strategy in Optimization

In the context of Reinforcement Learning, the agent’s strategy of directly jumping towards the
optimal point is of particular interest. The “direct jump” strategy can be succinctly described by
the following action:

a = x∗ − xi

where:

• x∗ represents the point where the function f(x) achieves its minimum.

• xi is the current point in the optimization process.

• a is the action or step taken towards the optimal point.

For convex functions, which possess a single global minimum, the direct jump strategy is highly
effective. An illustrative example is the function:

f(x) = x2

Here, x∗ = 0 is the global minimum. For any starting point xi, moving in the direction given
by x∗ − xi will lead towards this minimum. A prerequisite for this strategy’s effectiveness is
the knowledge of x∗. If x∗ is unknown, which is often the case in many real-world optimization
problems, the strategy cannot be applied. Consider the function:

f(x) = x2

The global minimum is at x∗ = 0. For a starting point xi = 3, the strategy suggests a step of
x∗ − xi = −3, indicating movement to the left.

The aim of this analysis is to evaluate whether the trained policy in the reinforcement learning
optimization environment has learned a strategy that closely resembles the direct jump strategy
of taking steps according to the formula a = x∗ − xi. We select a range of starting points xi and
for each xi, evaluate the predicted action from the trained policy. The predicted action is the
mean of a normal distribution. The expected action for any xi is calculated as a = x∗ − xi. We
plot the expected action against the predicted mean action to visually inspect the closeness. If
the mean predicted actions closely follow the line of expected actions, we can infer that the policy
has learned a strategy resembling the direct jump.

To evaluate how well the policy has learned the direct jump strategy, we can used: Relative
Distance and Root Mean Square Error (RMSE).

Relative Distance =
1

n

n∑
i=1

|apredicted,i − aexpected,i|
|aexpected,i|+ ϵ

40

41

Figure 5: Performance comparison between Gradient Descent and the RL-based optimization
policy over 100 iterations.

where n is the number of test points, apredicted,i and aexpected,i are the predicted and expected
actions for the i-th test point respectively, and ϵ is a small constant to avoid division by zero.

RMSE =

√√√√ 1

n

n∑
i=1

(apredicted,i − aexpected,i)
2

Upon testing the policy, the following metric values were obtained:

• RMSE Value: 0.5808

• Relative Distance Value: 0.8972

These values offer two distinct measures of how closely the policy approximates the direct
jump strategy across the test points. However, it is difficult to make any conclusive statements
about whether our agent has actually learned this strategy. It could be an interesting direction
to explore what type of policy our agent actually learned. Further work could focus on methods
for interpreting the learned policy.

§9.3 Increasing Complexity of State Representation

In many RL scenarios, the current state of the environment encapsulates all the necessary
information for the agent to make a decision. However, in certain situations, an agent’s decision
might benefit from considering historical data, i.e., states, actions, or rewards from previous time
steps. The implies that this historical perspective can provide the agent with context, especially
in environments where the current state might not capture all relevant dynamics.
Our experiment seeks to investigate this idea by examining the impact of varying lengths of

historical data on the learning efficiency and effectiveness of a neural network-based policy.
We use a simple optimization environment where the agent’s objective is to minimize a quadratic

function. This environment, though elementary, serves as a controlled setup to understand the
nuances of our investigation.
For our policy, we utilize a neural network that takes in the current state of the environment

(the current point on the function) and outputs an action (a step direction and size to move along
the function). The complexity arises when we augment the input to this network with historical
data. Specifically, we experiment with different lengths of history, denoted by h, where h is the
number of previous states (points and their respective function values) the network considers.
We train separate policies for each h value. Each policy is trained from scratch, ensuring no

knowledge carryover between experiments. The training process involves the agent interacting
with the environment, receiving rewards, and updating the policy to improve future decisions.

41

Experiments Reinforcement Learning, Hanan Ather

Figure 6: Optimization of single-variable continuous function

42

43

§9.4 Reinforcement Learning for Linear Regression Optimization

Next we experiment employing reinforcement learning (RL) to optimize the parameters of a linear
regression model. The goal is to leverage RL to find the best values for the coefficients that
minimize the mean squared error (MSE) on synthetic data. Consider a simple linear regression
model defined by:

y = wx+ b

where y is the dependent variable, x is the independent variable, and w and b are the weight and
bias respectively, which need optimization. Synthetic data was generated using the equation:

y = 2.0x− 3.0 + noise

where the noise follows a standard normal distribution. A total of 100 samples were generated.
The environment, LinearRegressionEnv, is responsible for:

• Evaluating the current model using MSE.

• Updating the model parameters w and b based on the agent’s action.

• Providing a reward, which is the negative of the MSE, as we aim to minimize it.

The agent’s policy, PolicyNetworkLinear, is a neural network that takes the current state
(values of w and b) and outputs the changes ∆w and ∆b. The actions are sampled from a normal
distribution centered around these outputs. The agent interacts with the environment for 500
episodes, where each episode consists of 100 steps. At each step, the agent:

• Observes the current state.

• Chooses an action based on its policy.

• Receives a reward from the environment.

• Adjusts its policy based on the reward using the REINFORCE algorithm.

The total reward for each episode, which is the cumulative negative MSE, is recorded. Upon
training completion, the cumulative reward per episode was plotted. An upward trend in this
graph indicates that the agent is gradually improving its policy to reduce the MSE over time.

Figure 7: After looping through the environments we compute the average reward across all
environments for that episode

One important limitation with this step is our agent has only been trained on one dataset.
There is no guarantee that the agent’s policy will generalize to a new linear regression problem.
In the next section we discuss the idea of generalization more in depth.

43

Experiments Reinforcement Learning, Hanan Ather

§9.5 Generalization

One of the main ideas of machine learning, regardless of domain, is to train on a finite set of
examples and then generalize to a broader class from which these examples were drawn. In
our specific context of developing optimization algorithms, it’s valuable to outline what these
‘examples’ and ‘class’ signify.
Contextualizing Objective Functions: Imagine a scenario where generalization wasn’t our
priority. Here, we’d evaluate an optimizer on the identical objective functions that were used during
its training. If we limited our training to a single objective function, an optimal optimizer would
merely memorize the solution. Such an optimizer would always converge to the pre-memorized
optimum in a single step, regardless of its starting point.
Expanding this viewpoint, when these objective functions act as loss functions for training

other models, it leads into meta-learning. This paradigm of developing optimization algorithms,
designed to improve the learning of base models, has been explored in seminal works like (Li &
Malik, 2016) [18] and (Andrychowicz et al., 2016) [19]. A related exploration is found in (Bengio
et al., 1991), which delved into learning Hebbian synaptic rules. Notably, while this rule took
into account certain dimensions of the current iteration, it remained independent of the objective
function, limiting its ability to generalize across varied objective functions.

Motivating Multiple Environments: Returning to our foundational concept, learning requires
training on numerous instances to generalize across a wider class. In our pursuit of learning an
optimizer for training base-models, this principle translates to the need for multiple objective
functions (or environments) during training. This will force the optimizer to generalize across
many optimization tasks.

§9.6 Multi-Task Learning for Optimizing Regression

In multi-task learning (MTL), a single model (or policy, in the reinforcement learning context)
is trained on multiple tasks simultaneously. The aim is to improve generalization by leveraging
the commonalities and differences across tasks. The primary objective in MTL is to achieve
good performance on all tasks using a shared representation. Contrastingly, meta-learning has
a slightly different goal. The model is trained over a variety of tasks with the aim of quickly
adapting to new, unseen tasks with minimal training. The main objective in meta-learning is
adaptation to new tasks.

In our setup, a single policy is trained across different synthetic datasets (or tasks) to optimize
the linear regression objective. The goal is to have one policy that excels across all these tasks and
adapts to new tasks. In mathematical terms, the objective function for MTL might be expressed
as:

min
π

N∑
i=1

Lτi(π)

Where:

• π represents the policy under training.

• Lτi denotes the loss on task τi.

• N signifies the total number of tasks.

The shared policy π is trained with the intent of minimizing the combined loss across all tasks.
By training the policy on multiple regression tasks concurrently, the goal is to learn a more
generalized understanding of optimization tasks, thereby making the policy robust across a broad
spectrum of regression problems. In our experiment, the concept of multi-task learning is inherent
in the following ways:

1. Multiple Environments with Unique Characteristics: Each environment represents
a unique linear regression task, defined by its own set of parameters (weights and biases).
By training the policy across multiple such environments, we essentially train it to solve
multiple tasks.

44

45

2. Shared Policy Across Tasks: The core idea in MTL is that tasks share some underlying
structure or patterns. In our case, the policy network is shared across all linear regression
tasks. It tries to learn a generalized strategy that can perform well on a variety of linear
regression tasks with different parameters.

3. Training Procedure: In each episode during training, a random environment (task) is
chosen from the set of training environments. The policy interacts with this environment
for the episode’s duration. Over multiple episodes, the policy gets exposed to various tasks,
allowing it to learn from the diversity of challenges.

4. Benefit of MTL in Our Experiment: The goal is for the policy to find a general
strategy to minimize the loss function of linear regression problems, irrespective of the
specific parameters of the problem. Training on a single environment might result in
overfitting to that specific task. However, by training across multiple tasks, we aim to make
the policy more robust and generalized.

5. Implicit Knowledge Transfer: By experiencing different tasks, the policy implicitly
transfers knowledge among tasks. For instance, the strategy it learns from one task might
help it better understand or solve another related task.

During the testing phase, we evaluate the policy on environments it hasn’t seen before. This
tests the policy’s ability to generalize its learning from the training tasks to new, unseen tasks.
It’s analogous to evaluating how well the knowledge from trained tasks is transferred to new tasks
in MTL. The hope is that the diversity of tasks will lead to a more robust and general policy that
can effectively tackle a wide range of linear regression problems. In our exploration, we aimed
to investigate the feasibility of using reinforcement learning (RL) to optimize linear regression
functions. Traditional optimization methods, such as gradient descent, have been well-understood
and widely adopted for linear regression problems. However, we sought to discover if an RL-based
approach could generalize across various datasets, potentially providing a more adaptable solution.

Our methodology involved the creation of synthetic datasets with known parameters. We then
trained an RL policy on a subset of these datasets, with the goal of minimizing the mean squared
error (MSE) of a linear regression model. The trained policy was then compared against classic
gradient descent on the same datasets in terms of convergence speed and final MSE.

Table 1: Comparison of Gradient Descent and RL Policy on datasets

Dataset #
Gradient Descent

MSE (100 iterations)
RL Policy MSE

1 0.1625 0.3345
2 0.1312 0.4164
3 0.0501 0.1333
4 0.0276 0.4367

From our experiments, it became evident that while the RL policy demonstrated the ability
to optimize across various datasets, its performance in terms of MSE was not as competitive as
classic gradient descent, especially when both were constrained to a similar number of iterations.
However, the RL policy’s ability to acutally generalize across datasets offers an interesting avenue
for further exploration.

In future work, it might be beneficial to explore more sophisticated RL algorithms, train on a
wider variety of datasets, or consider more complex regression models to better understand the
potential and limitations of RL in optimization tasks.

§9.7 Adaptive Learning Rate Optimization in Gradient Descent

At its core, Gradient Descent (GD) iteratively adjusts model parameters in order to minimize a
given cost or loss function. Mathematically, the update rule for GD is expressed as:

θt+1 = θt − α∇J(θt)

45

Experiments Reinforcement Learning, Hanan Ather

Figure 8: Optimization of single-variable continuous function

Where:

• θ represents the model parameters.

• α is the learning rate determining the step size.

• ∇J(θt) is the gradient of the cost function J with respect to the parameters θ at iteration t.

The learning rate α plays a pivotal role in the convergence of GD. If α is set too high, the
algorithm might overshoot the optimal point and diverge. Conversely, if it’s too low, GD may
either converge exceedingly slowly or become trapped in local minima.

9.7.1 Adaptive Learning Rate Methods

Over the years, several algorithms have been proposed to adjust the learning rate adaptively,
negating the need for manual tuning. Notable among these are:

• Adagrad: Scales the learning rate inversely proportional to the square root of the sum of
historical squared gradients. The update rule is:

θt+1 = θt −
α√

Gt + ϵ
⊙∇J(θt)

Where Gt is a diagonal matrix where each diagonal element i, i is the sum of the squares of
the gradients w.r.t. θi up to time step t, and ϵ is a smoothing term to prevent division by
zero.

• RMSprop: Modifies Adagrad to use a moving average of squared gradients. This addresses
Adagrad’s aggressive, monotonically decreasing learning rate.

• Adam: Combines ideas from both RMSprop and momentum optimization to compute
adaptive learning rates for each parameter.

These methods, while effective, rely on predefined mathematical formulations to adjust the
learning rate. They don’t “learn” the best adjustments based on the data, which leads us to our
novel approach.

46

47

9.7.2 Reinforcement Learning for Adaptive Learning Rate

Our method harnesses the power of Reinforcement Learning (RL) to dynamically adjust the
learning rate in GD. In this framework:

• State (s): Represents the current state of the optimization process. Formally:

s = (current gradient, current loss)

• Action (a): Dictates the adjustment to the learning rate. It’s the output of our policy π
conditioned on the current state:

a = π(s)

With a constrained between [-1, 1] after processing through a tanh activation.

• Reward (r): Quantifies how good our action was. It’s defined as the negative difference
between the initial and final loss after taking action a:

r = Initial Loss− Final Loss

The goal of the RL agent is to maximize the expected cumulative reward, which in this context
translates to minimizing the loss function efficiently.
We use the REINFORCE algorithm, a Monte Carlo Policy Gradient method, to train our

policy. Given a trajectory τ of states, actions, and rewards, the objective is to maximize the
expected cumulative reward. The gradient of the expected reward under this policy is given by:

∇θJ(θ) = Eπθ

[
T∑

t=0

∇θ log πθ(at|st)Rt

]

Where Rt is the cumulative reward from time t. Our policy network, given a state, outputs the
adjustment factor for the learning rate. The network architecture is structured as:

• Input Layer: 2-dimensional vector (current gradient, current loss)

• Hidden Layer: 128 neurons with ReLU activation

• Output Layer: Single neuron with tanh activation, yielding a value between [-1, 1]

The choice of the tanh activation function ensures that the action (adjustment factor) remains
bounded. This is crucial to prevent extreme learning rate adjustments that could destabilize the
optimization process.
We employed the REINFORCE algorithm, a form of policy gradient method, to train our

policy network. Given a trajectory τ of states, actions, and rewards, the objective is to maximize
the expected cumulative reward. The update rule for the policy’s parameters θ is expressed as:
We constructed synthetic linear regression datasets to simulate an environment for testing the
learning rate optimization. Each dataset is generated with random weights and biases, with added
noise. The environment’s task is to determine the optimal weights and biases using gradient
descent, by levering the policy network for learning rate adjustments.

Our primary evaluation metric was the Mean Squared Error (MSE) trajectory over a set number
of iterations. This metric gives a clear indication of the optimization’s efficiency. By comparing
the MSE trajectory of our RL-guided gradient descent to traditional methods, we can assess our
approach’s effectiveness.

9.7.3 Results and Observations

Upon evaluating our trained policy across various synthetic linear regression datasets, we made
several observations: We found that the RL-guided gradient descent converged faster than gradient
descent with fixed learning rate. Given a loss function L(w) that the model aims to minimize,
the learning rate α plays a crucial role in the update equation:

wt+1 = wt − α∇L(wt).

47

Experiments Reinforcement Learning, Hanan Ather

Figure 9: This figure juxtaposes the convergence behavior of traditional gradient descent (Standard
GD) with our reinforcement learning guided gradient descent (GD with Policy Adjusted
LR) over multiple synthetic linear regression environments. Left plot illustrates the
average loss trajectories for both methods across iterations. Right plot depicts the same
average loss trajectories but supplements them with shaded regions representing the
variance in loss values across different test environments.

• If α is too high, the updates may overshoot the global or local minima, leading to divergence
or oscillation.

• If α is too low, the algorithm may converge too slowly or become stuck in suboptimal local
minima.

These observations suggest that our RL approach to adaptive learning rate optimization, especially
for tasks with simple convex loss landscapes, is promising.

§9.8 Future Directions

While our study primarily focused on linear regression tasks, there are vast potential applications
for this approach. Future work could:

• Extending this reinforcement learning-based optimization to more complex classes of func-
tions such as non-convex loss functions

• Integrate other reinforcement learning algorithms or architectures, such as actor-critic
methods or deep Q-learning, to verify if they offer added improvements.

• Experiment with imitation learning to learn an optimal policy by leveraging data from
optimization algorithms such RMSpop or Adam to “teach” the agent how to optimize
functions.

In conclusion, we investigated techniques for learning optimization algorithms. We framed
this as a reinforcement learning challenge, where any optimization algorithm can be modeled
as a policy. The task of learning an optimization algorithm thus simplifies to identifying the
optimal policy. We used policy gradient methods to train our agent (optimizer) for simple classes
of convex objective functions. We found that the performance of these learned optimizers was
poor relative to even basic gradient descent. Additionally, we utilized reinforcement learning to
develop a policy for adaptively adjusting the learning rate in gradient descent. Upon comparing
gradient descent with an adaptive learning rate against gradient descent with a fixed rate, we
found that the adaptive method converges more rapidly.

48

49

References

[1] Sutton, Richard S and Barto, Andrew G Reinforcement learning: An introduction. MIT
press, 2018.

[2] Jordan, M.I. and Mitchell, T.M. Machine learning: Trends, perspectives, and prospects.
Science, 349(6245):255–260, 2015.

[3] Puterman, Martin L Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., 1994.

[4] Russell, Stuart J and Norvig, Peter Artificial intelligence: a modern approach. MIT press,
2016.

[5] Thrun, Sebastian and Burgard, Wolfram and Fox, Dieter Probabilistic Robotics. MIT Press,
2005. https://docs.ufpr.br/~danielsantos/ProbabilisticRobotics.pdf

[6] Komorowski, Matthieu and Celi, Leo Anthony and Badawi, Omar and Gordon, Anthony C.
and Faisal, A. Aldo The Artificial Intelligence Clinician learns optimal treatment strategies
for sepsis in intensive care. Nature Medicine, 24:1716–1720, 2018. https://finale.seas.
harvard.edu/publications/guidelines-reinforcement-learning-healthcare

[7] Buehler, Stefan and Ranganathan, Arun and Gupta, Rahul Reinforcement Learning for Fi-
nance. Stanford University, 2019. https://stanford.edu/~ashlearn/RLForFinanceBook/
book.pdf

[8] Mohri, Mehryar and Rostamizadeh, Afshin and Talwalkar, Ameet Foundations of Machine
Learning. The MIT Press, 2018. https://cs.nyu.edu/~mohri/mlbook/

[9] Bellman, Richard Dynamic Programming and Stochastic Control Processes. Information and
Control, 1:228–239, 1958.

[10] Sutton, Richard S. Learning to Predict by the Methods of Temporal Difference. Machine
Learning, 3:9–44, 1988.

[11] Watkins, Christopher JCH. Learning from Delayed Rewards. PhD Thesis, University of
Cambridge, England, 1989.

[12] Watkins, Christopher JCH and Dayan, Peter Q-learning. Machine Learning, 8(3):279–292,
1992.

[13] Marc G. Bellemare and Will Dabney and Mark Rowland Distributional Reinforcement
Learning. MIT Press, 2023.

[14] Ian Goodfellow and Yoshua Bengio and Aaron Courville Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org

[15] Dimitri Bertsekas Reinforcement Learning and Optimal Control. MIT Press, 2019.

[16] Kober, Jens and Bagnell, J. Andrew and Peters, Jan Reinforcement Learning in Robotics: A
Survey. International Journal of Robotics Research, 2013. https://www.ri.cmu.edu/pub_
files/2013/7/Kober_IJRR_2013.pdf

[17] Van Hasselt, Hado and Guez, Arthur and Silver, David Deep Reinforcement Learning with
Double Q-learning. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
2016. https://www.davidsilver.uk/wp-content/uploads/2020/03/doubledqn-1.pdf

[18] Li, Ke and Malik, Jitendra. Learning to Optimize. Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, United States,
[Online]. Available: https://arxiv.org/pdf/1606.01885.pdf

49

https://docs.ufpr.br/~danielsantos/ProbabilisticRobotics.pdf
https://finale.seas.harvard.edu/publications/guidelines-reinforcement-learning-healthcare
https://finale.seas.harvard.edu/publications/guidelines-reinforcement-learning-healthcare
https://stanford.edu/~ashlearn/RLForFinanceBook/book.pdf
https://stanford.edu/~ashlearn/RLForFinanceBook/book.pdf
https://cs.nyu.edu/~mohri/mlbook/
http://www.deeplearningbook.org
https://www.ri.cmu.edu/pub_files/2013/7/Kober_IJRR_2013.pdf
https://www.ri.cmu.edu/pub_files/2013/7/Kober_IJRR_2013.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/doubledqn-1.pdf
https://arxiv.org/pdf/1606.01885.pdf

References Reinforcement Learning, Hanan Ather

[19] Andrychowicz, Marcin; Denil, Misha; Colmenarejo, Sergio Gómez; Hoffman, Matthew W.;
Pfau, David; Schaul, Tom; Shillingford, Brendan; de Freitas, Nando. Learning to learn by
gradient descent by gradient descent. Google DeepMind, University of Oxford, Canadian
Institute for Advanced Research, [Online]. Available: https://arxiv.org/pdf/1606.01885.
pdf

[20] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov Proximal
Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017. [Online]. Avail-
able: https://arxiv.org/pdf/1707.06347.pdf bibitemGAE2015 John Schulman, Philipp
Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. HIGH-DIMENSIONAL CON-
TINUOUS CONTROL USING GENERALIZED ADVANTAGE ESTIMATION. Department
of Electrical Engineering and Computer Science, University of California, Berkeley. arXiv
preprint arXiv:1506.02438, 2015. [Online]. Available: https://arxiv.org/pdf/1506.02438.
pdf

[21] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, volume 8, pages 229–256, 1992. [Online]. Available:
https://people.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf

[22] Joshua Achiam, David Held, Aviv Tamar, Pieter Abbeel. Constrained Policy Optimization.
Proceedings of the International Conference on Machine Learning (ICML), 2017. [Online].
Available: https://doi.org/10.48550/arXiv.1705.10528

[23] Sham Kakade. A Natural Policy Gradient. Gatsby Computational Neuroscience Unit, London,
UK. [Online]. Available: http://www.gatsby.ucl.ac.uk

[24] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
Region Policy Optimization. ICML 2015. arXiv preprint arXiv:1502.05477, 2015. [Online].
Available: https://arxiv.org/pdf/1502.05477.pdf

[25] G. Tesauro. Temporal difference learning and TD-Gammon. In: Communications of the
ACM, 38(3):58–68, 1995.

[26] L.-J. Lin. Reinforcement learning for robots using neural networks. Tech. rep., DTIC Docu-
ment, 1993.

[27] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. In: IEEE Transactions on Audio, Speech,
and Language Processing, 20(1):30–42, 2012.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv preprint arXiv:1312.5602,
2013. [Online]. Available: https://arxiv.org/abs/1312.5602.

[30] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587):484–489, 2016.

50

https://arxiv.org/pdf/1606.01885.pdf
https://arxiv.org/pdf/1606.01885.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://people.cs.umass.edu/~barto/courses/cs687/williams92simple.pdf
https://doi.org/10.48550/arXiv.1705.10528
http://www.gatsby.ucl.ac.uk
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/abs/1312.5602

	Introduction
	What is Reinforcement Learning?
	Connections to Machine Learning
	History of Deep Reinforcement Learning
	Structure of Reinforcement Learning Algorithms
	Model-based and Model-free learning
	On-policy and Off-Policy Methods

	Background
	Markov Decision Process
	Episodic Reinforcement Learning
	Policy and Return
	Goal of Reinforcement Learning
	Value and State-Value Functions
	The Bellman Equations
	Finding Optimal Policies

	Tabular Algorithms
	Dynamic Programing
	Monte Carlo Learning
	Temporal difference learning
	Generalized Policy Iteration (GPI)
	Why Q-function for Control?

	Deep Reinforcement Learning
	Value Function Approximation
	State-Value Function Approximation

	Deep Q-Networks (DQN)
	Why Neural Networks?
	Q-Learning via Function Approximation
	Experience Replay
	DQNs: Fixed Q-Targets

	Policy Gradient Methods
	Policy Gradient Theorem
	Score Function Estimator
	Deriving Policy Gradient
	Monte Carlo Policy Gradient
	Baselines
	Generalizing Policy Gradients

	Advantage Actor-Critic
	The Advantage Function
	Estimating Advantage
	Generalized Advantage Estimation

	Advanced Policy Gradient Methods
	Performance Collapse and Surrogate Objective
	Monotonic Improvement Theory
	Trust Region Policy Optimization Problem
	Proximal Policy Optimization
	Adaptive KL Penalty Algorithm
	PPO with Clipped Surrogate Objectives

	Experiments
	Optimization as Reinforcement Learning
	Optimization of single-variable continuous functions
	Direct Jump Strategy in Optimization

	Increasing Complexity of State Representation
	Reinforcement Learning for Linear Regression Optimization
	Generalization
	Multi-Task Learning for Optimizing Regression
	Adaptive Learning Rate Optimization in Gradient Descent
	Adaptive Learning Rate Methods
	Reinforcement Learning for Adaptive Learning Rate
	Results and Observations

	Future Directions

